12.1.2.Получение пиромеллитового диангидрида
Парофазное окисление дурола. Одним из наиболее распространеных про-мышленных способов получения пиромеллитового диангидрида является процесс, основанный на каталитическом окислении дурола кислородом воздуха:
HCCH OCCO
33 + 6O2 + 6H2O.
HCCH OO
33
OCCO
Процесс обычно проводят при температуре 683-723 К, концентрации дурола в смеси с воздухом 0,1-0,2% (об.), объемной скорости подачи дуроло-воздушной смеси 6000-15000 ч-1.
К настоящему времени разработаны катализаторы парофазного окисления дурола многочисленных типов, состоящие из активной основы, сокатализатора и носителя. В качестве активной основы во всех случаях используется пентоксид ванадия. Обычно активная основа наряду с пентоксидом ванадия содержит также и низшие оксиды ванадия. В качестве сокатализаторов используются оксиды вольфрама, фосфора, олова, титана, серебра, молибдена, меди, итрия, ниобия и др. В качестве носителей используют низкопористые -оксид алюминия, карбид кремния, оксид титана, алюмосиликаты и др.
Некоторые катализаторы, применяемые в производстве пиромеллитового диан-гидрида парофазным окислением дурола, условия процесса и полученные при этом выходы продукта представлены в табл. 12.2.
В продуктах реакции парофазного окисления дурола кроме пиромеллитового диангидрида содержится ряд соединений как неполного окисления дурола, так и его более глубокого окисления.
Среди продуктов неполного окисления с сохранившимся углеродным скелетом обнаружены бензолкарбоновые кислоты, их ангидриды, производные бензальде-гида, фталида, фталана, дурохинон. Среди продуктов более глубокого окисления найдены малеиновый, диметилмалеиновый, цитраконовый и фталевый ангидриды, ангидрид тримеллитовой кислоты, уксусная кислота, формальдегид, оксиды угле-рода.
Таблица 12.2
Катализаторы, применяемые в производстве
пиромеллитового диангидрида
Условия Выход,
Фирма Катализатор/носитель Сырье
реакции % (мол.)
"Ниппон Сёку- | Пентоксид ванадия - оксид на- | Дурол | 703 К (728 К) | 62,5 |
бай Кагаку Ко- | трия/алунд |
| v = 10000 ч-1 |
|
|
| 476 |
гё" | с = 0,1% (об.) |
|
"Ниппон Сёку- | Пентоксид ванадия - оксид на- | Дурол | 693 К | 68,6 |
бай Кагаку Ко- | трия - диоксид титана/ алунд; |
| v = 16000 ч-1 |
|
гё" |
|
|
|
|
|
|
| с = 0,2% (об.) |
|
-
Пентоксид ванадия - оксид на-
Дурол
То же
69
трия - диоксид титана –
фосфорный ангидрид/ алунд
"Гельзенбepг | Пентоксид ванадия - оксид | Диизопро- | 653-673 К 67 |
Бензин" | вольфрама (или оксид алю- | пил-n- | v = 2200-3000 ч-1 |
| миния, диоксид олова, диоксид | ксилол, | с = 0,165% (об.) |
| вольфрама)/карбид кремния |
|
|
|
| дурол | 65-67 |
"Когё Гидзуцуин Пентоксид ванадия – Этил- или 673-713 К Токоси" - фосфорный ангидрид/ плав-изопропил- (703-803 К)
ленный оксид алюминия псевдо- -1
v = 1000-1500 ч
кумол
"Когё Гидзуцуин Пентоксид ванадия - оксид мо-Дурол 593 К (703 К) Токоси" либдена/диоксид титана (ана--1
v = 15000 ч
таз)
"Когё Гидзуцуин Пентоксид ванадия - оксид мо-Дурол703 К (653 К) Токоси" либдена - фосфорный ангид--1
v = 5000 ч
рид/диоксид титана (анатаз)
"Когё Гидзуцуин Пентоксид ванадия - фосфор-Дурол713 К (653 К) Токоси" ный ангидрид/диоксид титана -1
v = 15000 ч
(анатаз)
"Бергверксфер-Пентаоксид ванадия - оксид бис-633 К банд" молибдена - сульфат калия – Метокси- с = 0,50% (об.)
фосфорный ангидрид/ метил-п-
α-оксид алюминия ксилол
"Принстон Ке-Пентоксид ванадия - оксид мо-Дурол 748 К микл Рисерч" либдена (хромовый ангидрид,
оксид серебра, диоксид титана,
оксид вольфрама)/карбид крем-
ния
"Принстон Ке-Пентаоксид ванадия - пентаок-Дурол773 К микл Рисерч" -1
сид ниобия/корунд v = 11 000 ч
с=0,15% (об.)
50-70
67,5
32,5
67
60,5
51
62
Кавасаки Касей" | Пентаоксид ванадия - диоксид | Дурол | 693 К (713 К) | 58,5 |
| олова - сульфат калия/корунд |
| v = 11000 ч-1 |
|
с = 0,11% (об.)
477
"Мицубиси" Пентоксид ванадия - диоксид Ду-673 К (773 К) 69
селена/корунд рол -1
v = 18000 ч
с=0,33% (об.)
"Мицубиси" Пентоксид ванадия - фосфор-Ду-723 К 73
ный ангидрид - оксид вольфра-рол -1
v = 6000 ч
ма/корунд
с = 0,33% (об.)
"Мицубиси" Пентоксид ванадия - фосфор-Ду-773 К 62
ный ангидрид - оксид молибде-рол -1
v = 6000 ч
на с=0,48% (об.)
"Мицубиси" Пентоксид ванадия - фосфор-Ду-723 К (788 К) 54,5
ный ангидрид (плавленый ката-рол
лизатор)
Ниже в виде примера приведен состав смеси продуктов реакции (в %(мас.)), полученной при окислении 82,5%-й дурольной фракции.
Содержание, % (мас.)
Пиромеллитовый диангидрид …………………………….. ……….96,23
2,4,5-Трикарбоксибензальдегид …………………………... ………...0,09
Метилтримеллитовый ангидрид ………………………….. ………...0,66
Тримеллитовый ангидрид …………………………………. ………...1,25
4,5-Диметилфталевый ангидрид ………………………….. ………...1,26
2,5-Диметилтерефталевая кислота + 2,4-диметилизо-фталевая ки-
слота …………………………………………... ………...0,03
4-Формил-2, 5-диметилбензойная кислота ………………. ………...0,06
2,5-Диметилтерефталевый диальдегид …………………... ………...0,02
4-Метилфталевый ангидрид ………………………………. ………...0,16
Фталевый ангидрид ………………………………………... ………...0,03
Дуриловая кислота ………………………………………… ………...0,03
Дуриловый альдегид ………………………………………. ………...0,03
Дурохинон ………………………………………………….. ………...0,03
Бензойная кислота …………………………………………. ………...0,03
Кроме того, в смеси продуктов присутствуют более высокомолекулярные смо-листые вещества.
Особенностью строения молекулы дурола является соседство метильных групп, расположенных в пределах расстояний, допускающих их внутримолеку-лярное взаимодействие с перемещением атомов водорода из одной боковой цепи в другую. При этом окисление одной группы облегчает вступление в реакцию со-седней метильной группы.
На оксиднованадиевом катализаторе при температуре процесса протекает реакция дегидрирования дурола с образованием достаточно устойчивого дурильного ради-кала С6Н2(СН3), который затем с получением -
3СН2присоединяеткислородперок
сидного дурильного радикала С62СН33СН2ОО. Егодальнейшеепревращение
Н()
478
сопровождается переносом атомов водорода из одной боковой группы в другую:
[O]
-H2O
-H2O
Другое направление может быть связано с процессами внутримолекулярной циклизации промежуточных кислородсодержащих соединений в 5-членные струк-туры на стадиях, предшествующих появлению карбоксильных групп. Ангидрид-ные группировки формируются при этом путем окисления метиленовых групп 5-членных циклов, минуя стадии образования подверженных декарбоксилированию свободных карбоновых кислот:
·
479
Присутствие в продуктах реакции ангидрида тримеллитовой кислоты и фтале-вого ангидрида может быть следствием как деалкилирования исходного дурола, так и других деструктивных процессов, например декарбоксилирования и декар-бонилирования соответствующих кислот и альдегидов.
Наличие в молекуле дурола нескольких реакционноспособных участков обу-словливает многообразие направлений его окисления. Предполагается, что основ-ная реакция протекает в направлении:
дурол 4,5-диметилфталан 4,5-диметилфталид
4,5-диметилфталевый ангидрид пиромеллитовый диангидрид
малеиновый ангидрид СО + СО2
Пиромеллитовый диангидрид может быть получен окислением дурилен-гликоля. Основными продуктами процесса являются пиромеллитовый диангид-рид, ангидриды цитраконовой и малеиновой кислот, формальдегид, оксиды угле-рода.При парофазном окислении октагидроантрацена также образуется пиромел-литовый диангидрид с выходом ~ 90% (масс.). В качестве катализатора использу-ют пентаоксид ванадия.
Жидкофазное окисление дурола. При жидкофазном окислении дурола в качестве окислителей применяют азотную и хромовую кислоты, перманганат ка-лия, хлор, сернистый ангидрид, воздух, кислород и др. Поскольку жидкофазное окисление проводят в водных растворах, первичными продуктами превращения любого сырья является пиромеллитовая кислота, которая далее подвергается очи-стке и последующей обработке для перевода ее в диангидрид
При использовании в качестве окислителя воздуха или кислорода не проис-ходит полного превращения метильных групп дурола в карбоксильные группы и для получения пиромеллитовой кислоты необходимо доокисление продукта пер-вой стадии азотной кислотой или другими окислителями в сравнительно жестких условиях. Впервые процесс жидкофазного окисления дурола азотной кислотой разработала фирма "Дюпон". На первой стадии в мягких условиях окисления об-разуется дуриловая кислота, которую на второй стадии переводят в пиромеллито-вую кислоту при повышенных давлениях и температуре.
Несмотря на высокий выход пиромеллитовой кислоты, метод окисления азотной кислотой имеет ряд недостатков:
- образование большого количества промежуточных продуктов, разделение которых затруднено;
- образование большого количества (до 10%) нитропроизводных, что приво-дит к окрашиванию продукта;
- образование взрывоопасных соединений;
- разрушение аппаратуры под действием коррозии;
- сложная схема процесса, связанная с необходимостью регенерации азотной кислоты.
480
Однако вследствие более высоких выходов целевого продукта, процесс окисления азотной кислотой успешно конкурирует с процессом парофазного окисления.
Разработан также промышленный вариант производства пиромеллитового диангидрида окислением дурола кислородом воздуха в присутствии катализато-ров: ацетатов кобальта, солей церия. В качестве инициаторов окисления исполь-зуют бромид натрия и тетрабромэтан. Окисление протекает в среде уксусной ки-слоты при температурах 410 - 505 К. Недостатком описанного метода является высокотемпературная коррозия реактора агрессивной реакционной системой, со-держащей бром, азотную кислоту и пиромеллитовую кислоту. Для повышения выхода пиромеллитовой кислоты и уменьшения образования нитропродуктов раз-работан двухстадийный способ получения пиромеллитовой кислоты. На первой стадии дурол окисляют воздухом под давлением 1,5 МПа при 438-443 К в присут-ствии стеарата кобальта до получения оксидата с кислотным числом 250-300. На второй стадии оксидат дурола доокисляют 17-20%-ной азотной кислотой при 468-478 К и давлении в титановом автоклаве 2-3 МПа. Продолжительность окисления на первой стадии 2-3 ч, на второй- 1,5-2 ч. Выход пиромеллитовой кислоты со-ставляет 80-85%.
При жидкофазном окислении дурола получают пиромеллитовую кислоту, которую следует перевести в диангидрид. Жидкофазное окисление осуществляют азотной кислотой в две стадии: на первой - получают дуроловую кислоту оксиле-нием кислородом воздуха при 1,5 МПа и 433-443 К в присутствии стеарата ко-бальта, на второй - 17-20%-ной азотной кислотой доокисляют дуриловую кислоту при 1,96-2,94 МПа и 468-478 К. Выход пиромеллитовой кислоты достигает 80-85% (мол.) т.е. выше, чем в любом другом процессе. В двухстадийном процессе не образуются нитропроизводные дурола, так как дуриловая кислота нитруется с трудом.
Газофазное окисление дурола. Газофазное окисление дурола воздухом при 623-773 К, концентрации дурола в дуроло-воздушной смеси 0,1-0,5%, объемной нагрузке катализатора по дуроло-воздушной смеси 6 000 – 18 000 ч-1
приводит не-посредственно к образованию пиромеллитового диангидрида с выходом 65-75 %. При окислении дуролсодержащих фракций степень использования дурола (выход диангидрида) возрастает по мере снижения его концентрации во фракции:
Содержание Выход пиромеллитового Производительность ка-
дурола во фракции, % диангидрида, % тализатора, г/л3
(кат.)·ч
99,7 66,6 82,0
96,0 71,8 84,8
-
90,0
74,2
81,6
81,0
78,5
78,1
-
72,0
83,2
73,4
481
Окисление псевдокумола. Пиромеллитовый диангидрид получают в лаборатор-ных условиях путем окисления псевдокумола по видоизмененному методу Мил-лса и Клара.
Сначала взаимодействием псевдокумола и ацетилхлорида получают ацетилпсев-докумол с выходом 90% от теоретического.
HCCH HC CH
33CH3COCl33
AlCl3HCCOCH
HC
333
Далее ацетилпсевдокумол окисляют гипобромитом натрия с образованием дури-ловой кислоты:
HCCH HCCH
33NaOBr33
HCCOCHHCCOOH
33 3
Затем дуриловую кислоту окисляют щелочным раствором перманганата калия при 623-633 К до пиромеллитовой кислоты:
HCCH HOOCCOOH
33KMnO4
HCCOOHHOOCCOOH
3
И наконец, нагреванием в вакууме (остаточное давление 10 Па) при 498-513 К пи-ромеллитовую кислоту превращают в диангидрид:
HOOCCOOH OCCO
OO
HOOCCOOH
CO
OC
- Isbn 5-02-006396-7
- Глава 1. Процессы переработки нефти ...................................................... 26
- Глава 2. Процессы переработки угля и газа ............................................ 60
- Глава 3. Олефиновые мономеры ................................................................ 81
- Глава 4. Диеновые мономеры .................................................................... 118
- Глава 5. Галогенсодержащие мономеры ................................................. 171
- Глава 6. Виниловые мономеры с ароматическими и гетероцикли- ческими заместителями .............................................................. 212
- Глава 7. Акриловые мономеры ................................................................ 241
- Глава 8. Спирты и виниловые эфиры ...................................................... 283
- Глава 9. Мономеры для простых полиэфиров ....................................... 313
- Глава 10. Мономеры для сложных полиэфиров .................................... 346
- Глава 11. Мономеры для полиамидов....................................................... 399
- Глава 12. Мономеры для полиимидов...................................................... 470
- Глава 13. Мономеры для полиуретанов................................................... 496
- Глава 14. Мономеры для поликарбонатов…………………… 531
- Глава 15. Мономеры для феноло- и амино-альдегидных полимеров 569
- Глава 16. Кремнийорганические мономеры ........................................ 596
- Глава 17. Другие металлсодержащие и неорганические мономеры 642 17.1. Мономеры для серосодержащих полимеров ...................................... 642
- Глава 1
- 1.1. Термодеструктивные процессы
- 1.1.1. Атмосферно-вакуумная перегонка нефти
- 1.1.2. Висбрекинг
- 1.1.3. Термический крекинг
- 1.1.4. Термоконтактный крекинг
- 1.1.5. Пиролиз нефтяного сырья
- 1.1.6. Коксование
- 1.2. Каталитические процессы
- 1.2.1. Каталитический крекинг
- 1.2.2. Каталитический риформинг
- 1.2.3. Гидрокрекинг
- 1.2.4. Алкилирование
- 1.2.5. Изомеризация алканов
- 1.3. Структура современного
- Глава 2
- 2.1 . Газификация угля
- 2.1.1. Автотермические процессы
- 2.1.2. Газификация в "кипящем слое"
- 2.1.3. Гидрогенизация угля
- 2.2. Переработка природных и попутных газов и
- 2.2.1. Переработка природных газов
- 2.2.2. Переработка газового конденсата
- 2.3. Химические основы производства водорода
- 2.3.1. Каталитическая конверсия углеводородов
- 2.3.2. Каталитическая конверсия оксида углерода
- 2.3.3. Общие сведения о технологии получения водорода
- Глава 3
- 3.1. Низшие олефины
- 3.1.1. Сырье для производства низших олефинов
- 3.1.2. Получение этилена
- 3.1.3. Получение пропилена
- 3.1.4. Получение бутена-1
- 3.1.5. Получение изобутилена
- 3.2. Высшие олефины
- 3.2.1. Получение высших олефинов димеризацией и
- 3.2.2. Диспропорционирование олефинов
- 3.2.3. Димеризация и диспропорционирование
- 3.2.4. Получение высших олефинов из синтез-газа
- 3.2.5. Получение циклоолефинов
- Глава 4
- 4.1. Бутадиен-1,3
- 4.1.1. Способ с.В. Лебедева
- 4.1.2. Способ и.И. Остромысленского
- 4.1.3. Получение бутадиена из ацетилена
- 4.1.4. Промышленные способы получения бутадиена
- 4.2. Изопрен
- 4.2.1. Двухстадийное получение изопрена из
- 4.2.2. Получение изопрена из изобутилена и формальдегида
- 4.2.3. Получение изопрена из изобутилена и метилаля
- 4.2.4. Получение изопрена дегидрированием углеводородов с
- 4.2.5. Получение изопрена из пропилена
- 4.2.6. Получение изопрена из ацетилена и ацетона
- 4.2.7. Получение изопрена жидкофазным окислением углеводородов
- 4.2.8. Получение изопрена из бутенов-2 и синтез-газа
- 4.3. Диеновые мономеры для получения
- 4.3.2. Получение производных норборнена
- Глава 5
- 5.1. Хлоросодержащие мономеры
- 5.1.1. Теоретические основы процессов хлорирования углеводородов
- 5.1.2. Окислительное хлорирование
- 5.1.3.Гидрохлорирование
- 5.1.4. Дегидрохлорирование
- 5.1.5. Производство хлорорганических продуктов
- 5.1.6. Получение винилхлорида
- 5.1.7.Получение винилиденхлорида
- 5.1.8. Получение хлоропрена
- 5.1.9. Получение эпихлоргидрина
- 5.2. Фторсодержащие мономеры
- 5.2.1. Теоретические основы процессов фторирования
- 5.2.2. Механизм реакций фторирования
- 5.2.3. Способы фторирования алканов
- 5.2.4. Фторирующие агенты
- 5.2.5. Получение винилфторида
- 5.2.6. Получение винилиденфторида
- 5.2.7. Получение перфторпроизводных углеводородов
- 5.2.8. Получение других фторпроизводных углеводородов
- 5.2.9. Получение хладонов (фреонов)
- Глава 6 виниловые мономеры с ароматическими и гетероциклическими заместителями
- 6.1. Стирол и его производные
- 6.1.1. Получение стирола Препаративные методы синтеза стирола
- Промышленные методы синтеза стирола
- 6.1.2. Получение -метилстирола
- 6.2. Винилпиридины
- 6.2.1. Общая характеристика основных способов получения винилпиридинов
- 6.2.2. Промышленные методы получения винилпиридинов Синтез 5-винил-2-метилпиридина
- Синтез 2- и 4-винилпиридинов и 2-винил-5-этилпиридина
- 6.3.1. Прямое винилирование -пирролидона ацетиленом
- 6.3.2 Косвенное винилирование -пирролидона
- 6.4.1. Получение n-винилкарбазола по реакции винилирования ацетиленом
- 6.4.2. Получение n-винилкарбазола по реакции винилового обмена
- 6.4.3. Получение 9-винилкарбазолов многостадийными методами
- Разложение n-(2-гидроксиэтил)карбазола
- Разложение 1-замещенных n-этилкарбазолов
- 6.5. Другие виниловые мономеры
- 6.5.1. Получение этилиденнорборнена
- 6.5.2. Получение винилтолуола
- 6.5.3. Получение винилкетонов
- Синтез винилметилкетона
- Синтез изопропенилметилкетона
- Синтез винилфенилкетона
- Синтез виниленкарбоната
- Глава 7
- 7. 1. Акрилонитрил
- 7.1.1.Получение акрилонитрила через этиленоксид и этиленциангидрин
- 7.1.2.Окислительный аммонолиз пропилена
- 7.1.3.Получение акрилонитрила из ацетилена и синильной кислоты
- 7.1.4.Получение акрилонитрила через ацетальдегид и гидроксинитрил
- 7.2.1. Препаративные методы получения акриламида
- 7.2.2. Промышленные методы получения акриламида
- 7.3 Акриловая кислота
- 7.3.1.Гидролиз акрилонитрила
- 7.3.2.Гидрокарбоксилирование ацетилена
- 7.3.3. Парофазное окисление пропилена
- 7.3.4. Гидролиз этиленциангидрина
- 7.3.5. Гидролиз -пропиолактона
- 7.3.6. Окислительное карбонилирование этилена
- 7.4. Метакриловая кислота
- 7.4.1. Газофазное окисление изобутилена
- 7.4.2. Окисление метакролеина
- 7.4.3. Газофазное окисление метакролеина
- 7.5. Акрилаты
- 7.5.1. Получение акрилатов этерификацией акриловой метакриловой кислот
- 7.5.2. Получение акрилатов переэтерификацией
- 7.5.3. Получение акрилатов из этиленциангидрина
- 7.5.4. Получение акрилатов из ацетилена по реакции Реппе
- 7.5.5. Получение акрилатов из кетена и формальдегида
- 7.5.6. Получение акрилатов из акрилонитрила
- 7.6. Метакрилаты
- 7.6.1. Получение метилметакрилата из ацетона и циангидрина
- 7.6.2. Получение метилметакрилата из трет-бутилового спирта
- 7.6.3. Получение метилметакрилата из изобутилена
- 7.6.4. Новые методы получения метилметакрилата
- 7.6.5. Получение других алкилметакрилатов
- 7.7.Олигоэфиракрилаты
- Глава 8
- 8.1. Поливиниловый и аллиловый спирты
- 8.2. Основы процессов винилирования
- 8.3. Простые виниловые эфиры
- 8.3.1. Получение простых виниловых эфиров
- 8.3.2. Другие методы получения простых виниловых эфиров
- 8.4. Сложные виниловые эфиры. Винилацетат
- 8.5. Производные поливилового спирта –
- Глава 9
- 9.1. Формальдегид
- 9.1.1 Механизм и катализаторы
- 9.1.2. Получение формальдегида
- 9.2. Этиленоксид
- 9.2.1. Получение этиленоксида через этиленхлоргидрин
- 9.2.2. Прямое окисление этилена
- 9.3. Пропиленоксид
- 9.3.1. Получение пропиленоксида
- 9.3.2. Получение пропиленоксида окислением пропилена через пропиленхлоргидрин
- 9.4. Фениленоксид
- 9.5. Аллилглицидиловый эфир
- 9.6. Эпихлоргидрин
- 9.6.1. Получение эпихлоргидрина из глицерина
- 9.6.2. Получение эпихлоргидрина из аллилхлорида
- 9.7. Сульфоны
- Глава 10 мономеры для сложных полиэфиров
- 10.1. Терефталевая кислота и диметилтерефталат
- 10.1.1. Процесс фирмы "Дюпон"
- 10.1.2. Процесс фирмы "Виттен"
- 10.1.3. Процесс фирмы "Aмoкo"
- Промежуточные и побочные продукты окисления п-ксилола до терефталевой кислоты
- Технология получения терефталевой кислоты
- 10.1.4. Одностадийный процесс внипим
- 10.1.5. Получение ароматических и гетероциклических карбоновых кислот путем термического превращения их щелочных солей
- Превращения щелочных солей
- 10.1.6 Процесс фирмы "Мицубиси"
- 10.1.7. Получение терефталевой кислоты из угля
- 10.2. Малеиновый ангидрид
- 10.2.1 . Получение малеинового ангидрида окислением бензола в газовой фазе
- 10.2.2 . Получение малеинового ангидрида окислением бутана
- 10.2.3. Получение малеинового ангидрида окислением н-бутенов
- 10.2.4. Выделение малеинового ангидрида как побочного продукта в производстве фталевого ангидрида
- 10.3. Фталевый ангидрид
- 10.3.1. Парофазное окисление о-ксилола или нафталина
- 10.3.2. Жидкофазное окисление о-ксилола или нафталина
- 10.3.3. Процесс внииос
- 10.4. Фумаровая кислота
- 10.5. Дихлормалеиновая и дихлормуровая кислоты
- 10.5.1. Получение дихлормалеиновой кислоты и ее ангидрида
- 10.5.2. Получение дихлорфумаровой кислоты и ее ангидрида
- 10. 6. Нафталин-2,6-дикарбоновая кислота
- 10.7. Тиофен-2,5-дикарбоновая кислота
- 10.8. Азелаиновая кислота
- 10.9. Диолы
- 10.9.1. Получение этиленгликоля
- 10.9.2. Получение пропандиола-1,2
- 10.9.3. Получение бутандиола-1,4
- Синтез бутандиола-1,4 на основе возобновляемого сырья (процесс фирмы "Квакер Оатс")
- 10.9.4. Получение 1,4-дигидроксиметилциклогексана
- Глава 11
- 11.1. Мономеры для полиамидов, получаемых полимеризацией
- 11.1.1. Получение капролактама Методы синтеза капролактама
- Капролактоновый процесс фирмы "Юнион Карбайд"
- Нитроциклогексановый процесс фирмы "Дюпон"
- Процесс фирмы «Байер»
- Процесс фирмы "сниа Вискоза".
- Основные стадии синтеза капролактама
- Синтез капролактама из толуола
- Фотохимический синтез капролактама
- 11.1.2. Получение валеролактама
- 11.1.3. Получение 7-аминогептановой кислоты
- 11.1.4. Получение каприлолактама
- 11.1.5. Получение 9-аминононановой кислоты
- 11.1.6. Получение 11-аминоундекановой кислоты
- 11.1.7. Получение лауролактама
- Тримеризация бутадиена
- Процесс фирмы "Хемише Халс"
- Процесс фирмы "Убе"
- 11.1.8. Получение α-пирролидона
- Восстановительное аминирование малеинового ангидрида
- 11.2. Мономеры для полиамидов, получаемых поликонденсацией дикарбоновых кислот и диаминов
- 11.2.1. Получение адипиновой кислоты
- Синтез адипиновой кислоты из циклогексана
- Синтез адипиновой кислоты из тетрагидрофурана
- Синтез адипиновой кислоты из фенола
- Другие промышленные методы синтезы адипиновой кислоты
- 11.2.2. Получение адиподинитрила
- Синтез адиподинитрила из адипиновой кислоты
- Синтез адиподинитрила из бутадиена
- Синтез адиподинитрила из акрилонитрила электрохимическим методом
- Каталитическая димеризация акрилонитрила
- 11.2.3. Получение гексаметилендиамина
- Синтез гексаметилендиамина из адипиновой кислоты
- Синтез гексаметилендиамина через гександиол-1,6
- Синтез гексаметилендиамина из бутадиена
- Димеризация акрилонитрила
- 11.2.4. Получение других мономеров для синтеза полиамидов
- 11.2.5. Получение м-ксилилендиамина
- Бромирование м-ксилола
- Окислительный аммонолиз
- 11.3.2. Получение волокнообразующих полиамидов на основе декандикарбоновой кислоты и 4,4-диаминодициклогексилметана
- Синтез декандикарбоновой кислоты
- 11.4. Мономеры для полностью ароматических полиамидов
- 11.4.1. Получение хлорангидридов ароматических кислот
- Синтез хлорангидриродов из ксилолов
- Тионильный метод
- 11.4.2. Получение мономеров для волоконообразующих полиамидов поликонденсацией 4,4-диаминодифенилсульфона
- 11.4.3. Получение 2,5-бис(n-аминофенил)-1,3,4-оксадиазола
- 11.4.4. Получение 5,5'-Бис(м-аминофенил)-2,2'-бис(1,3,4-оксадиазолил)
- 11.4.5. Получение 4,4'-бис(п-аминофенил)-2,2-битиазола
- 11.4.6. Получение бис(м-аминофенил)тиазоло(5,4-d)тиазола
- 11.4.7. Получение мономеров для полиамидов на основе пиперазина и двухосновных кислот Синтез пиперазина
- Глава 12
- 12.1. Пиромеллитовый диангидрид
- 12.1.1. Получение дурола
- 12.1.2.Получение пиромеллитового диангидрида
- 12.2. Диангидриды дифенилтетракарбоновых кислот
- 12.2.1. Получение диангидрида дифенил-2,2',3,3'-тетракарбоновой кислоты
- 12.2.2. Получение диангидрида дифенил-2,3,5,6-тетракарбоновой
- 12.2.3. Получение
- 12.2.4. Получение
- 12.3. Диангидриды нафталинтетракарбоновых кислот
- 12.3.1. Получение
- 12.3.2. Получение диангидрида нафталин-2,3,6,7-тетракарбоновой
- 12.4. Диангидриды бензофенон- и
- 12.4.1. Получение
- 12.4.2. Получение диангидрида перилен-3,4,9,10-тетракарбоновой кислоты
- 12.5. Ароматические диамины
- 12.5.1. Получение о- и м-фенилендиаминов
- 12.5.2. Получение n-фенилендиамина
- 12.5.3. Получение бензидина
- 12.6. Производные анилина
- 12.6.1 Получение анилинфталеина
- 12.6.2. Получение анилинфлуорена
- 12.6.3. Получение анилинантрона
- Глава 13
- 13.1. Диамины
- 13.1.1. Получение диаминов восстановлением динитрилов
- 13.1.2. Получение диаминов
- 13.2. Диизоцианаты и изоцианаты
- 13.2.1. Фосгенирование аминов
- 13.2.2. Перегруппировки Курциуса, Гофмана и Лоссена
- 13.2.3. Получение толуилендиизоцианатов
- 13.2.5. Получение других диизоцианатов
- 13.2.6. Получение изоцианатов
- 13.3. Полиолы и простые полиэфиры
- 13.3.1. Получение β-диолов
- 13.3.2 Получение глицерина
- 13.3.3. Получение арилалифатические диолов
- 13.3.4. Получение мономеров для полиэфирполиолов
- Глава 14
- 14.1. Бисфенолы
- 14.1.1. Получение бисфенола а
- 14.1.2. Получение галогензамещенных бисфенолов
- 14.2. Дифенилкарбонат
- 14.2.1. Получение дифенилкарбоната
- 14.2.2. Получение дифенилкарбоната
- 14.3. Бисфенол s
- 14.4. Резорцин
- 14.5. Циклокарбонаты
- 14.5.2. Получение циклокарбонатов
- 14.5.3. Получение циклокарбонатов на основе диолов
- 14.5.4. Получение полифункциональных циклокарбонатов
- Глава 15
- 15.1. Мономеры для феноло-альдегидных полимеров
- 15.1.2. Получение бромфенолов и их производных – антипиренов
- 15.2. Мономеры для карбамидо-альдегидных
- 15.2.1. Получение карбамида
- 15.2.2. Получение меламина
- Глава 16
- 16.1. Методы получения
- 16.1.1. Магнийорганический синтез
- 16.1.2. Прямой синтез
- 16.1.3. Дегидроконденсация кремнийгидридов
- 16.1.4. Конденсация кремнийгидридов
- 16.1.5 Гидросилилирование
- 16.2. Органохлорсиланы
- 16.2.1. Получение метил- и этилхлорсиланов
- 16.2.2. Получение органохлорсиланов термокаталитическим
- 16.2.3. Получение органохлорсиланов
- 16.2.4. Пиролитические способы получения органохлорсиланов
- 16.2.5. Получение кремнийорганических мономеров химическими
- 16.2.6 Получение тетрахлорсилана
- 16.2.7. Очистка диорганодихлорсиланов
- 16.3. Мономеры для силоксановых каучуков
- 16.3.1. Получение силоксановых каучуков
- 16.3.2. Получение силоксановых мономеров
- 16.3.3. Другие способы получения
- 16.4. Мономеры
- 16.4.1. Получение гексаорганоциклотрисилоксанов
- 16.4.2. Получение кремнийорганических уретанов
- 16.5. Мономеры для поликремнийуглеводородов -
- Глава 17
- 17.1. Мономеры для серосодержащих полимеров
- 17.1.1. Получение сульфида и полисульфидов натрия
- 17.1.2. Получение 1,2-дихлорэтана
- 17.1.3. Получение n-дихлорбензола
- 17.2. Фосфазены (фосфонитрилы)
- 17.3. Борсодержащие мономеры
- 17.4. Азотсодержащие мономеры
- 17.4.1. Получение мономеров с азольными циклами
- 17.4.2. Получение ди- и тетракарбоновых кислот
- 17.4.3. Получение бензимидазолов
- 17.4.4. Получение бензоксазолов
- 17.4.5. Получение бисмалеимидов
- 17.5. Металлсодержащие мономеры и полимеры на их
- 17.5.1. Получение металлсодержащих мономеров, включающих кова-
- 17.5.2. Получение металлсодержащих мономеров ионного типа
- 17.5.3. Получение металлсодержащих мономеров,
- 17.5.4. Получение металлсодержащих мономеров π-типа
- In the synthesis of monomers