9.3.1. Получение пропиленоксида
прямым окислением кислородом
При прямом окислении пропилена, как каталитическом, так и некатали-тическом, выход пропиленоксида не превышает 25% (при окислении этилена выход оксида составляет 40%).
Окисление пропана
Пропиленоксид в США и Японии производится как побочный продукт при окислении пропана при 673 К и давлении 2,0 МПа до метанола, формальде-гида, ацетальдегида и уксусной кислоты. Кроме пропиленоксида образуются акролеин, ацетальдегид, формальдегид и диоксид углерода.
Примерно четвертая часть от вводимого сырья окисляется в ходе процес-са до СО2, другая четверть превращается в оксид пропилена, а оставшееся сы-рье – в ацетальдегид и формальдегид. Стадия выделения и очистки пропилена является наиболее дорогостоящей. На 1 т пропиленоксида образуется ~12 т сточных вод, загрязненных большими количествами токсичных веществ.
Ниже приведены параметры процесса получения пропиленоксида окис-лением пропана:
-
Расход пропана,
Селективность,
Компоненты
кг/кг пропиленоксида
кг/кг пропана
-
Пропан
3,11
-
Кислород
4,17
-
Технологическая вода
10,20
-
Оксид кальция
-
-
Охлаждающая вода
0,3
-
Ацетальдегид
-
0,77
Формальдегид
-
0,66
СО2/СО
-
2,43
Другие вещества
-
0,10
-
Сточные воды
-
12,00
Этот метод, однако, не получил большого распространения.
Некаталитическое жидкофазное окисление пропилена
Окисление пропилена проводят молекулярным кислородом в жидкой фа-зе при температуре ~ 433 К и давлении 5,0-6,0 МПа. По технологии, разрабо-танной фирмой "Монсанто", в качестве растворителя используют диацетат про-пиленгликоля, фирма "Петрокарбон Девелопмент" (США) применяет смесь изопропанола с уксусной кислотой. Выход пропиленоксида по технологии фирмы "Монсанто" достигает 40%. В получаемой смеси продуктов содержание уксусной кислоты равно ~11%, а 30-40% составляют другие продукты.
334
Хотя по сравнению с парофазными методами в данном методе выход продукта более высокий, однако из-за образования большого количества по-бочных продуктов, сложности их разделения, очистки, а также проблем, возни-кающих вследствие коррозии оборудования из-за присутствия уксусной и му-равьиной кислот, он не нашел применения в промышленности.
Каталитическое жидкофазное окисление пропилена
В качестве катализаторов окисления применяютиспользуют неорганиче-ские и органические соединения кобальта, марганца, хрома, рения, меди, арсе-ниты, соединения фосфора, хлоруксусной кислоты, эфиры борной кислоты. Из-бирательность по пропиленоксиду составляет 50-70%. Выход, равный 87%, на-блюдался при использовании в качестве катализатора суспензии серебра в сре-де эфиров фталевой кислоты при 433 К. В промышленности этот способ не на-шел применения.
Жидкофазное окисление пропилена пероксисоединениями
Более перспективными являются процессы, в которых окисляющий агент (пероксид, надкислоты, гидропероксиды) образуется не in situ из кислорода и пропилена, а вводится в реактор.
Окисление пропилена пероксидом водорода. Реакция окисления про-пилена пероксидом водорода осуществляется только в присутствии органиче-ских кислот (уксусной или муравьиной), катализаторов (осмия, рения, молиб-дена) или специальных органических растворителей при 288-353 К.
Теоретически при взаимодействии пропилена с Н2О2 в присутствии кар-боновых кислот должны образовываться пропиленоксид и вода. На практике в результате протекания побочных реакций выход гликолей и их эфиров превы-шает выход пропиленоксида. Промышленное применение данного способа оп-ределяется стоимостью Н2О2. Полузаводская установка по производству про-пиленоксида с применением пероксида водорода создана в Бельгии фирмой "Пропилокс СА".
Фирмы "Байер" и "" (ФРГ) разработали непрерывный метод по-
Дегусса
лучения пропиленоксида с применением в качестве окислителя надропионовой кислоты, образующейся при рециркуляции пропионовой кислоты и Н2О2 в при-сутствии серной кислоты.
Окисление пропилена пероксидами. Различные пути прямого окисле-ния пропилена до пропиленоксида в промышленном плане потерпели неудачу. Это связано с тем, что при прямом окислении пропилена именно метильная группа окисляется легче всего, что приводит к существенному снижению се-лективности и образованию большого количества трудно разделяемых кисло-родсодержащих продуктов. Проблема была решена при использовании вместо кислорода в качестве окислителя гидропероксидов (ROOH) или надкислот (RCOOOH).
Основная трудность в случае применения гидропероксидов или надки-слот для фиксации кислорода заключается в том, что использование этих со-
335
единений в количествах, близких к стехиометрии, приводит к одновременному получению спирта или кислоты:
СН3—СН=СН2 + ROOH СН3-СН—СН2 + ROH,
-
О
СН3—СН=СН2
+ RCOOOH
СН3-СН—СН2 + RСОOH
О
Существует много пероксидных соединений, которые могут выполнять функцию окислителя в процессах получения пропиленоксида, однако, из-за экономических соображений используют гидропероксиды трет-бутила и этил-бензола, а также надуксусную и надпропионовую кислоты в качестве перкис-лот.
Окисление органическими надкислотами. Органические надкислоты - надмуравьиная, надуксусная, надмалеиновая, надфталевая и другие реагируют с пропиленом с образованием пропиленоксида и соответствующих карбоновых кислот. Скорость эпоксидирования во многом зависит от природы растворителя и снижается в ряду: уксусная кислота, тетрахлорид углерода, бензол, метилэ-тилкетон, метанол, ацетон, этилацетат. Предпочтительной является надуксус-ная кислота, которая получается в процессе окисления пропилена в этилацетате или уксусной кислоте. Фирма "Дайсел" (Япония) реализовала этот метод на ус-тановке мощностью ~ 120000 т/год.
На рис. 9.6 приведена схема установки синтеза пропиленоксида с исполь-зованием надуксусной кислоты.
Р ис. 9.6. Схема установки синтеза пропиленоксида с применением надуксусной
кислоты (по данным компании "Дайсел")
1 - абсорбер; 2 - концентратор; 3 - реакция; 4 – блок отделения пропи-
леноксида; 5 – блок перегонки под давлением; 6 – блок отделения приме-
336
сей из этилацетата; 7 – блок разложения надкислоты; 8 – блок отделения
уксусной кислоты; 9 – блок очистки оксида пропилена; 10 – блок отгонки
легких фракций.
Потоки: I – уксусная кислота; II – этилацетат; III - надуксусная кислота;
IV – газообразные продукты (СО2, СН4, С2Н4, О2, С3Н6); V - смесь продук-
тов; VI – пропилен+пропан; VII – пропилен; VIII – пропан; IX – уксусная
кислота+надуксусная кислота; X – этилацетат; XI – азот; XII – эфиры гли-
коля; XIII –этилацетат и другие продукты; XIV – легкие фракции; XV – ок-
сид пропилена
Окисление органическими гидропероксидами. Окисление пропилена органическими гидропероксидами нашло уже применение в промышленности и рассматривается как весьма перспективное.
Для получения органических гидропероксидов можно использовать изобу-тан, при окислении которого образуется трет-бутилгидропероксид:
CH3 CH3 CH3
-
2CH3—C—H + 1,5O2
CH3—C—OOH + CH3—C—OH
-
CH3
CH3
CH3
трет-Бутил-
трет-Бутанол
гидропероксид
Окисление кислородом протекает в жидкой фазе в отсутствие катализатора при 383-403 К, давлении 3-3,5 МПа, продолжительности процесса ~ 7 ч при конверсии изобутана ~ 35%. Общий выход гидропероксида и спирта на прореа-гировавший изобутан равен ~ 95%.
Эпоксидирование пропилена
Эпоксидирование проводят в жидкой фазе с использованием в качестве ка-тализатора раствора нафтената молибдена в смеси гидропероксида и пропиле-на:
CH3 CH3
CH3—C—OOH + CH3—CH=CH2 | CH3—HC—CH2 + CH3—C—OH |
CH3 | O CH3 |
Процесс протекает при 353-383 К, 3-4 МПа при мольном соотношении гидропероксид:спирт:пропилен, равном 1:1:3. Общее время пребывания реаген-тов в реакторах составляет 2,5 ч. Степень конверсии гидропероксида достигает 90-95%, пропилена - 15%. Селективность образования пропиленоксида и спир-та по гидропероксиду составляет соответственно 85% и 95%.
Теоретически на каждый моль пропиленоксида должно образоваться два моля трет-бутанола, т.е. 2,51 т трет-бутанола на 1 т пропиленоксида. Практи-чески же образуется ~ 3 т трет-бутанола на 1 т пропиленоксида, что несколько ухудшает технико-экономические показатели процесса.
337
Процесс осуществляют в жидкой фазе в присутствии в качестве катализа-тора М2О3 и нафтената калия для регулирования рН реакционной смеси.
В табл. 9.3 приведены носители кислорода (пероксидные соединения), спо-собные вступать в реакцию с образованием конечных продуктов.
Таблица 9.3
Реакционные системы, применяемые при синтезе пропиленоксида
-
Побочный
Конечный
Сырье
Пероксидное соединение
продукт
продукт(
-
Ацетальдегид
Надуксусная кислота
Уксусная кислота
-
-
Изопропиловый
Изопропиловый
То же
Ацетон
спирт
спирт
-
Изобутан
трет-Бутилгидропероксид
трет-Бутанол
Изобутан
-
трет-
Изопентан
трет-Пентанол
Стирол
Пентилгидропероксид
-
Метилфенил-
Этилбензол
Этилбензилгидропероксид
Стирол
карбинол
Диметилфенил-
Кумол
Кумилгидропероксид
Метилстирол
карбинол
-
Циклогексан
Циклогексилпероксид
Циклогексанол
Циклогексанон
Метод получения пропиленоксида с применением гидропероксидов реали-зован в промышленном масштабе фирмой "Оксиран Корпорейшн" (Голландия) и имеет широкие перспективы.
- Isbn 5-02-006396-7
- Глава 1. Процессы переработки нефти ...................................................... 26
- Глава 2. Процессы переработки угля и газа ............................................ 60
- Глава 3. Олефиновые мономеры ................................................................ 81
- Глава 4. Диеновые мономеры .................................................................... 118
- Глава 5. Галогенсодержащие мономеры ................................................. 171
- Глава 6. Виниловые мономеры с ароматическими и гетероцикли- ческими заместителями .............................................................. 212
- Глава 7. Акриловые мономеры ................................................................ 241
- Глава 8. Спирты и виниловые эфиры ...................................................... 283
- Глава 9. Мономеры для простых полиэфиров ....................................... 313
- Глава 10. Мономеры для сложных полиэфиров .................................... 346
- Глава 11. Мономеры для полиамидов....................................................... 399
- Глава 12. Мономеры для полиимидов...................................................... 470
- Глава 13. Мономеры для полиуретанов................................................... 496
- Глава 14. Мономеры для поликарбонатов…………………… 531
- Глава 15. Мономеры для феноло- и амино-альдегидных полимеров 569
- Глава 16. Кремнийорганические мономеры ........................................ 596
- Глава 17. Другие металлсодержащие и неорганические мономеры 642 17.1. Мономеры для серосодержащих полимеров ...................................... 642
- Глава 1
- 1.1. Термодеструктивные процессы
- 1.1.1. Атмосферно-вакуумная перегонка нефти
- 1.1.2. Висбрекинг
- 1.1.3. Термический крекинг
- 1.1.4. Термоконтактный крекинг
- 1.1.5. Пиролиз нефтяного сырья
- 1.1.6. Коксование
- 1.2. Каталитические процессы
- 1.2.1. Каталитический крекинг
- 1.2.2. Каталитический риформинг
- 1.2.3. Гидрокрекинг
- 1.2.4. Алкилирование
- 1.2.5. Изомеризация алканов
- 1.3. Структура современного
- Глава 2
- 2.1 . Газификация угля
- 2.1.1. Автотермические процессы
- 2.1.2. Газификация в "кипящем слое"
- 2.1.3. Гидрогенизация угля
- 2.2. Переработка природных и попутных газов и
- 2.2.1. Переработка природных газов
- 2.2.2. Переработка газового конденсата
- 2.3. Химические основы производства водорода
- 2.3.1. Каталитическая конверсия углеводородов
- 2.3.2. Каталитическая конверсия оксида углерода
- 2.3.3. Общие сведения о технологии получения водорода
- Глава 3
- 3.1. Низшие олефины
- 3.1.1. Сырье для производства низших олефинов
- 3.1.2. Получение этилена
- 3.1.3. Получение пропилена
- 3.1.4. Получение бутена-1
- 3.1.5. Получение изобутилена
- 3.2. Высшие олефины
- 3.2.1. Получение высших олефинов димеризацией и
- 3.2.2. Диспропорционирование олефинов
- 3.2.3. Димеризация и диспропорционирование
- 3.2.4. Получение высших олефинов из синтез-газа
- 3.2.5. Получение циклоолефинов
- Глава 4
- 4.1. Бутадиен-1,3
- 4.1.1. Способ с.В. Лебедева
- 4.1.2. Способ и.И. Остромысленского
- 4.1.3. Получение бутадиена из ацетилена
- 4.1.4. Промышленные способы получения бутадиена
- 4.2. Изопрен
- 4.2.1. Двухстадийное получение изопрена из
- 4.2.2. Получение изопрена из изобутилена и формальдегида
- 4.2.3. Получение изопрена из изобутилена и метилаля
- 4.2.4. Получение изопрена дегидрированием углеводородов с
- 4.2.5. Получение изопрена из пропилена
- 4.2.6. Получение изопрена из ацетилена и ацетона
- 4.2.7. Получение изопрена жидкофазным окислением углеводородов
- 4.2.8. Получение изопрена из бутенов-2 и синтез-газа
- 4.3. Диеновые мономеры для получения
- 4.3.2. Получение производных норборнена
- Глава 5
- 5.1. Хлоросодержащие мономеры
- 5.1.1. Теоретические основы процессов хлорирования углеводородов
- 5.1.2. Окислительное хлорирование
- 5.1.3.Гидрохлорирование
- 5.1.4. Дегидрохлорирование
- 5.1.5. Производство хлорорганических продуктов
- 5.1.6. Получение винилхлорида
- 5.1.7.Получение винилиденхлорида
- 5.1.8. Получение хлоропрена
- 5.1.9. Получение эпихлоргидрина
- 5.2. Фторсодержащие мономеры
- 5.2.1. Теоретические основы процессов фторирования
- 5.2.2. Механизм реакций фторирования
- 5.2.3. Способы фторирования алканов
- 5.2.4. Фторирующие агенты
- 5.2.5. Получение винилфторида
- 5.2.6. Получение винилиденфторида
- 5.2.7. Получение перфторпроизводных углеводородов
- 5.2.8. Получение других фторпроизводных углеводородов
- 5.2.9. Получение хладонов (фреонов)
- Глава 6 виниловые мономеры с ароматическими и гетероциклическими заместителями
- 6.1. Стирол и его производные
- 6.1.1. Получение стирола Препаративные методы синтеза стирола
- Промышленные методы синтеза стирола
- 6.1.2. Получение -метилстирола
- 6.2. Винилпиридины
- 6.2.1. Общая характеристика основных способов получения винилпиридинов
- 6.2.2. Промышленные методы получения винилпиридинов Синтез 5-винил-2-метилпиридина
- Синтез 2- и 4-винилпиридинов и 2-винил-5-этилпиридина
- 6.3.1. Прямое винилирование -пирролидона ацетиленом
- 6.3.2 Косвенное винилирование -пирролидона
- 6.4.1. Получение n-винилкарбазола по реакции винилирования ацетиленом
- 6.4.2. Получение n-винилкарбазола по реакции винилового обмена
- 6.4.3. Получение 9-винилкарбазолов многостадийными методами
- Разложение n-(2-гидроксиэтил)карбазола
- Разложение 1-замещенных n-этилкарбазолов
- 6.5. Другие виниловые мономеры
- 6.5.1. Получение этилиденнорборнена
- 6.5.2. Получение винилтолуола
- 6.5.3. Получение винилкетонов
- Синтез винилметилкетона
- Синтез изопропенилметилкетона
- Синтез винилфенилкетона
- Синтез виниленкарбоната
- Глава 7
- 7. 1. Акрилонитрил
- 7.1.1.Получение акрилонитрила через этиленоксид и этиленциангидрин
- 7.1.2.Окислительный аммонолиз пропилена
- 7.1.3.Получение акрилонитрила из ацетилена и синильной кислоты
- 7.1.4.Получение акрилонитрила через ацетальдегид и гидроксинитрил
- 7.2.1. Препаративные методы получения акриламида
- 7.2.2. Промышленные методы получения акриламида
- 7.3 Акриловая кислота
- 7.3.1.Гидролиз акрилонитрила
- 7.3.2.Гидрокарбоксилирование ацетилена
- 7.3.3. Парофазное окисление пропилена
- 7.3.4. Гидролиз этиленциангидрина
- 7.3.5. Гидролиз -пропиолактона
- 7.3.6. Окислительное карбонилирование этилена
- 7.4. Метакриловая кислота
- 7.4.1. Газофазное окисление изобутилена
- 7.4.2. Окисление метакролеина
- 7.4.3. Газофазное окисление метакролеина
- 7.5. Акрилаты
- 7.5.1. Получение акрилатов этерификацией акриловой метакриловой кислот
- 7.5.2. Получение акрилатов переэтерификацией
- 7.5.3. Получение акрилатов из этиленциангидрина
- 7.5.4. Получение акрилатов из ацетилена по реакции Реппе
- 7.5.5. Получение акрилатов из кетена и формальдегида
- 7.5.6. Получение акрилатов из акрилонитрила
- 7.6. Метакрилаты
- 7.6.1. Получение метилметакрилата из ацетона и циангидрина
- 7.6.2. Получение метилметакрилата из трет-бутилового спирта
- 7.6.3. Получение метилметакрилата из изобутилена
- 7.6.4. Новые методы получения метилметакрилата
- 7.6.5. Получение других алкилметакрилатов
- 7.7.Олигоэфиракрилаты
- Глава 8
- 8.1. Поливиниловый и аллиловый спирты
- 8.2. Основы процессов винилирования
- 8.3. Простые виниловые эфиры
- 8.3.1. Получение простых виниловых эфиров
- 8.3.2. Другие методы получения простых виниловых эфиров
- 8.4. Сложные виниловые эфиры. Винилацетат
- 8.5. Производные поливилового спирта –
- Глава 9
- 9.1. Формальдегид
- 9.1.1 Механизм и катализаторы
- 9.1.2. Получение формальдегида
- 9.2. Этиленоксид
- 9.2.1. Получение этиленоксида через этиленхлоргидрин
- 9.2.2. Прямое окисление этилена
- 9.3. Пропиленоксид
- 9.3.1. Получение пропиленоксида
- 9.3.2. Получение пропиленоксида окислением пропилена через пропиленхлоргидрин
- 9.4. Фениленоксид
- 9.5. Аллилглицидиловый эфир
- 9.6. Эпихлоргидрин
- 9.6.1. Получение эпихлоргидрина из глицерина
- 9.6.2. Получение эпихлоргидрина из аллилхлорида
- 9.7. Сульфоны
- Глава 10 мономеры для сложных полиэфиров
- 10.1. Терефталевая кислота и диметилтерефталат
- 10.1.1. Процесс фирмы "Дюпон"
- 10.1.2. Процесс фирмы "Виттен"
- 10.1.3. Процесс фирмы "Aмoкo"
- Промежуточные и побочные продукты окисления п-ксилола до терефталевой кислоты
- Технология получения терефталевой кислоты
- 10.1.4. Одностадийный процесс внипим
- 10.1.5. Получение ароматических и гетероциклических карбоновых кислот путем термического превращения их щелочных солей
- Превращения щелочных солей
- 10.1.6 Процесс фирмы "Мицубиси"
- 10.1.7. Получение терефталевой кислоты из угля
- 10.2. Малеиновый ангидрид
- 10.2.1 . Получение малеинового ангидрида окислением бензола в газовой фазе
- 10.2.2 . Получение малеинового ангидрида окислением бутана
- 10.2.3. Получение малеинового ангидрида окислением н-бутенов
- 10.2.4. Выделение малеинового ангидрида как побочного продукта в производстве фталевого ангидрида
- 10.3. Фталевый ангидрид
- 10.3.1. Парофазное окисление о-ксилола или нафталина
- 10.3.2. Жидкофазное окисление о-ксилола или нафталина
- 10.3.3. Процесс внииос
- 10.4. Фумаровая кислота
- 10.5. Дихлормалеиновая и дихлормуровая кислоты
- 10.5.1. Получение дихлормалеиновой кислоты и ее ангидрида
- 10.5.2. Получение дихлорфумаровой кислоты и ее ангидрида
- 10. 6. Нафталин-2,6-дикарбоновая кислота
- 10.7. Тиофен-2,5-дикарбоновая кислота
- 10.8. Азелаиновая кислота
- 10.9. Диолы
- 10.9.1. Получение этиленгликоля
- 10.9.2. Получение пропандиола-1,2
- 10.9.3. Получение бутандиола-1,4
- Синтез бутандиола-1,4 на основе возобновляемого сырья (процесс фирмы "Квакер Оатс")
- 10.9.4. Получение 1,4-дигидроксиметилциклогексана
- Глава 11
- 11.1. Мономеры для полиамидов, получаемых полимеризацией
- 11.1.1. Получение капролактама Методы синтеза капролактама
- Капролактоновый процесс фирмы "Юнион Карбайд"
- Нитроциклогексановый процесс фирмы "Дюпон"
- Процесс фирмы «Байер»
- Процесс фирмы "сниа Вискоза".
- Основные стадии синтеза капролактама
- Синтез капролактама из толуола
- Фотохимический синтез капролактама
- 11.1.2. Получение валеролактама
- 11.1.3. Получение 7-аминогептановой кислоты
- 11.1.4. Получение каприлолактама
- 11.1.5. Получение 9-аминононановой кислоты
- 11.1.6. Получение 11-аминоундекановой кислоты
- 11.1.7. Получение лауролактама
- Тримеризация бутадиена
- Процесс фирмы "Хемише Халс"
- Процесс фирмы "Убе"
- 11.1.8. Получение α-пирролидона
- Восстановительное аминирование малеинового ангидрида
- 11.2. Мономеры для полиамидов, получаемых поликонденсацией дикарбоновых кислот и диаминов
- 11.2.1. Получение адипиновой кислоты
- Синтез адипиновой кислоты из циклогексана
- Синтез адипиновой кислоты из тетрагидрофурана
- Синтез адипиновой кислоты из фенола
- Другие промышленные методы синтезы адипиновой кислоты
- 11.2.2. Получение адиподинитрила
- Синтез адиподинитрила из адипиновой кислоты
- Синтез адиподинитрила из бутадиена
- Синтез адиподинитрила из акрилонитрила электрохимическим методом
- Каталитическая димеризация акрилонитрила
- 11.2.3. Получение гексаметилендиамина
- Синтез гексаметилендиамина из адипиновой кислоты
- Синтез гексаметилендиамина через гександиол-1,6
- Синтез гексаметилендиамина из бутадиена
- Димеризация акрилонитрила
- 11.2.4. Получение других мономеров для синтеза полиамидов
- 11.2.5. Получение м-ксилилендиамина
- Бромирование м-ксилола
- Окислительный аммонолиз
- 11.3.2. Получение волокнообразующих полиамидов на основе декандикарбоновой кислоты и 4,4-диаминодициклогексилметана
- Синтез декандикарбоновой кислоты
- 11.4. Мономеры для полностью ароматических полиамидов
- 11.4.1. Получение хлорангидридов ароматических кислот
- Синтез хлорангидриродов из ксилолов
- Тионильный метод
- 11.4.2. Получение мономеров для волоконообразующих полиамидов поликонденсацией 4,4-диаминодифенилсульфона
- 11.4.3. Получение 2,5-бис(n-аминофенил)-1,3,4-оксадиазола
- 11.4.4. Получение 5,5'-Бис(м-аминофенил)-2,2'-бис(1,3,4-оксадиазолил)
- 11.4.5. Получение 4,4'-бис(п-аминофенил)-2,2-битиазола
- 11.4.6. Получение бис(м-аминофенил)тиазоло(5,4-d)тиазола
- 11.4.7. Получение мономеров для полиамидов на основе пиперазина и двухосновных кислот Синтез пиперазина
- Глава 12
- 12.1. Пиромеллитовый диангидрид
- 12.1.1. Получение дурола
- 12.1.2.Получение пиромеллитового диангидрида
- 12.2. Диангидриды дифенилтетракарбоновых кислот
- 12.2.1. Получение диангидрида дифенил-2,2',3,3'-тетракарбоновой кислоты
- 12.2.2. Получение диангидрида дифенил-2,3,5,6-тетракарбоновой
- 12.2.3. Получение
- 12.2.4. Получение
- 12.3. Диангидриды нафталинтетракарбоновых кислот
- 12.3.1. Получение
- 12.3.2. Получение диангидрида нафталин-2,3,6,7-тетракарбоновой
- 12.4. Диангидриды бензофенон- и
- 12.4.1. Получение
- 12.4.2. Получение диангидрида перилен-3,4,9,10-тетракарбоновой кислоты
- 12.5. Ароматические диамины
- 12.5.1. Получение о- и м-фенилендиаминов
- 12.5.2. Получение n-фенилендиамина
- 12.5.3. Получение бензидина
- 12.6. Производные анилина
- 12.6.1 Получение анилинфталеина
- 12.6.2. Получение анилинфлуорена
- 12.6.3. Получение анилинантрона
- Глава 13
- 13.1. Диамины
- 13.1.1. Получение диаминов восстановлением динитрилов
- 13.1.2. Получение диаминов
- 13.2. Диизоцианаты и изоцианаты
- 13.2.1. Фосгенирование аминов
- 13.2.2. Перегруппировки Курциуса, Гофмана и Лоссена
- 13.2.3. Получение толуилендиизоцианатов
- 13.2.5. Получение других диизоцианатов
- 13.2.6. Получение изоцианатов
- 13.3. Полиолы и простые полиэфиры
- 13.3.1. Получение β-диолов
- 13.3.2 Получение глицерина
- 13.3.3. Получение арилалифатические диолов
- 13.3.4. Получение мономеров для полиэфирполиолов
- Глава 14
- 14.1. Бисфенолы
- 14.1.1. Получение бисфенола а
- 14.1.2. Получение галогензамещенных бисфенолов
- 14.2. Дифенилкарбонат
- 14.2.1. Получение дифенилкарбоната
- 14.2.2. Получение дифенилкарбоната
- 14.3. Бисфенол s
- 14.4. Резорцин
- 14.5. Циклокарбонаты
- 14.5.2. Получение циклокарбонатов
- 14.5.3. Получение циклокарбонатов на основе диолов
- 14.5.4. Получение полифункциональных циклокарбонатов
- Глава 15
- 15.1. Мономеры для феноло-альдегидных полимеров
- 15.1.2. Получение бромфенолов и их производных – антипиренов
- 15.2. Мономеры для карбамидо-альдегидных
- 15.2.1. Получение карбамида
- 15.2.2. Получение меламина
- Глава 16
- 16.1. Методы получения
- 16.1.1. Магнийорганический синтез
- 16.1.2. Прямой синтез
- 16.1.3. Дегидроконденсация кремнийгидридов
- 16.1.4. Конденсация кремнийгидридов
- 16.1.5 Гидросилилирование
- 16.2. Органохлорсиланы
- 16.2.1. Получение метил- и этилхлорсиланов
- 16.2.2. Получение органохлорсиланов термокаталитическим
- 16.2.3. Получение органохлорсиланов
- 16.2.4. Пиролитические способы получения органохлорсиланов
- 16.2.5. Получение кремнийорганических мономеров химическими
- 16.2.6 Получение тетрахлорсилана
- 16.2.7. Очистка диорганодихлорсиланов
- 16.3. Мономеры для силоксановых каучуков
- 16.3.1. Получение силоксановых каучуков
- 16.3.2. Получение силоксановых мономеров
- 16.3.3. Другие способы получения
- 16.4. Мономеры
- 16.4.1. Получение гексаорганоциклотрисилоксанов
- 16.4.2. Получение кремнийорганических уретанов
- 16.5. Мономеры для поликремнийуглеводородов -
- Глава 17
- 17.1. Мономеры для серосодержащих полимеров
- 17.1.1. Получение сульфида и полисульфидов натрия
- 17.1.2. Получение 1,2-дихлорэтана
- 17.1.3. Получение n-дихлорбензола
- 17.2. Фосфазены (фосфонитрилы)
- 17.3. Борсодержащие мономеры
- 17.4. Азотсодержащие мономеры
- 17.4.1. Получение мономеров с азольными циклами
- 17.4.2. Получение ди- и тетракарбоновых кислот
- 17.4.3. Получение бензимидазолов
- 17.4.4. Получение бензоксазолов
- 17.4.5. Получение бисмалеимидов
- 17.5. Металлсодержащие мономеры и полимеры на их
- 17.5.1. Получение металлсодержащих мономеров, включающих кова-
- 17.5.2. Получение металлсодержащих мономеров ионного типа
- 17.5.3. Получение металлсодержащих мономеров,
- 17.5.4. Получение металлсодержащих мономеров π-типа
- In the synthesis of monomers