5.7. Адсорбция полимеров из растворов на твердой поверхности
Взаимодействие макромолекулы с твердой поверхностью лежит в основе многих физико-химических процессов и явлений: гель-хроматографии полимеров, стабилизации коллоидов полимерами. Испытываемые молекулами внешние пространственные ограничения определяют структуру цепей в аморфных прослойках микрогетерогенных систем (наполненные полимеры, блок-сополимеры, аморфно-кристаллические полимеры). Эффекты адсорбции макромолекул определяют адгезию полимеров к различным субстратам, проявляются при взаимодействии биополимеров с поверхностями клеток. Нативная структура биополимеров образуется в результате адсорбции макромолекулы на самой себе (белковая глобула) или на комплементарной цепи (двойная спираль ДНК).
Особенностью адсорбции в полимерных системах является существование фазовых переходов различного рода. Важнейшим отличием адсорбции полимеров от адсорбции низкомолекулярных соединений является наличие порогового эффекта. Если значение энергии притяжения звена цепи к поверхности меньше критической энергии , требуемой для начала адсорбции полимерные клубки остаются в растворе, доля связанного полимера мала и не зависит от . При больших энергиях притяжения , все полимерные цепи связаны с поверхностью, доля свободных молекул в растворе (I - m ) - уменьшается до нуля с ростом . С увеличением молекулярной массы при связывание молекул осуществляется скачкообразно: в докритической области и непосредственно при переходе через критическую точку . При этом изменяется конформация цепей. В докритической области макромолекула представляет собой невозмущенный гауссов клубок. После адсорбции, при слабом покрытии поверхности, макромолекулы теряют свойства гауссовых клубков в направлении, перпендикулярном поверхности адсорбента и представляют собой последовательность адсорбированных участков и соединяющих их петель, средние размеры которых определяются величиной энергии сорбции. Переход макромолекул из раствора на поверхность, происходящий в критической точке, является фазовым переходом II рода, о чем свидетельствуют изломы в энергии и энтропии системы.
Рост термодинамической жесткости цепи (увеличение сегмента) приводит к убыванию критической энергии , требуемой для начала адсорбции. Это объясняется тем, что энтропийные потери цепи при адсорбции убывают с ростом жесткости, т.е. для их компенсации требуется меньшая энергия связывания с поверхностью.
Вторичная структура макромолекулы влияет на ее адсорбцию, т. к. сорбционная активность спиральных и клубковых звеньев различна. И наоборот, степень спиральности адсорбированных цепей отличается от исходной степени спиральности макромолекул в растворе.
При рассмотрении адсорбции полимеров из разбавленного раствора необходимо принимать во внимание конформацию макромолекулы, характеризуемую средними размерами цепи и .
Изотермы адсорбции полимеров из раствора отличаются от изотерм Ленгмюра. Иногда изотермы представляют собой кривые с одним или двумя максимумами. Один максимум имеет изотерма адсорбции полиметилметакрилата из толуольного раствора.
При адсорбции макромолекул на твердой поверхности различают четыре типа центров поверхности: занятые , экранированные макромолекулой , находящиеся между адсорбированными макромолекулами в количестве, меньшем минимально необходимого для удержания макромолекулы на поверхности , свободные (рис. 5.7). Сумма относительных количеств центров каждого типа, равна единице, т.е. .
Многоцентровый характер адсорбции полимеров из раствора приводит к образованию в пределах одной макромолекулы участков непосредственно контактирующих с поверхностью, (эшелонов), свободных "хвостов" и "петель". Современные теории адсорбции позволяют дать количественную характеристику адсорбированной макромолекулы. Можно вычислить средние длины хвостов, участков, контактирующих с поверхностью, петель и их распределение по размерам. С учетом энтропии образование "хвостов" предпочтительнее образования "петель". Петли обладают меньшей конформационной свободой, чем хвосты такой же длины, что затрудняет приближение "петель" к поверхности. Можно получить также концентрационные профили сегментов петель и хвостов.
Рис. 5.7. Адсорбция макромолекул на твердой поверхности.
При построении теоретической ленгмюровской изотермы адсорбции учитываются только два типа центров: свободные и занятые.
При построении экспериментальной изотермы адсорбции учитываются все четыре типа центров. Это приводит к значительному отличию теоретической и экспериментальной изотерм (рис. 5.8).
Рис. 5.8. Расчетная (1) и экспериментальная (2) изотермы адсорбции.
При малой концентрации макромолекул в растворе расчетная и экспериментальная изотермы совпадают, т.к. число свободных центров много больше числа занятых центров, , а .
- I. Введение
- 1.1. Место коллоидной химии в общей системе наук
- 1.2. Краткие исторические сведения
- 1.3. Предмет коллоидной химии
- 1.4. Физические и химические поверхностные явления
- 1.5. Основные признаки объектов коллоидной химии
- 1.6. Фундаментальные особенности ультрадисперсного (коллоидного) состояния вещества
- 1.7. Влияние дисперсности на свойства вещества
- 1.8. Значение коллоидной химии в природе и технике
- II. Поверхностные явления и адсорбция
- 2.1. Классификация поверхностных явлений
- 2.2. Основы термодинамики поверхностного слоя
- 2.3. Интенсивные свойства гетерогенных систем
- 2.4. Экстенсивные свойства гетерогенных систем
- 2.5. Метод избыточных величин Гиббса
- 2.8. Уравнение Гиббса для плоского поверхностного слоя
- 2.9. Понятие об адсорбции
- III. Адсорбция на различных границах раздела
- 3.1. Понятие об адсорбции
- 3.2 Количественные характеристики адсорбции
- 3.3. Типы адсорбционных зависимостей
- 3.4. Адсорбция газов и паров на твердом теле
- 3.5. Адсорбция как обратимый экзотермический процесс
- 3.6. Физическая адсорбция и хемосорбция
- 3.7. Значение координационных связей при хемосорбции
- 3.8. Природа адсорбционных сил
- 3.9. Изотермы адсорбции
- 3.10. Кинетика адсорбции
- 3.11. Классическая теория адсорбции
- 3.11.1. Теория мономолекулярной адсорбции Ленгмюра
- Вывод уравнения Ленгмюра.
- Анализ уравнения Ленгмюра
- Полимолекулярная (потенциальная) теория адсорбции Поляни
- 3.11.3. Теория Брунауэра, Эииета и Теллера (бэт).
- 3.11.4. Схема полимолекулярной адсорбции
- 4.1 Поведение растворенных веществ на границе раствора с газом
- 4.2 Поверхностная активность.
- 4.3 Поверхностно – инактивные вещества
- 4.4 Вывод адсорбционного уравнения Гиббса
- 4.5 Строение адсорбционного слоя пав на границе раствора с газом
- 4.6 Уравнение состояния двумерного газа.
- 4.7 Диаграммы состояния поверхностных пленок
- 4.8 Химические реакции в поверхностных пленках.
- 4.9 Самоорганизованные монослои и пленки, перенесенные на твердую подложку с поверхности вода-воздух (пленки Ленгмюра –Блоджетт).
- 4.10 Двухсторонние пленки
- 4.11 Вид изотермы поверхностного натяжения. Уравнение Шишковского
- 4.12 Связь уравнений Ленгмюра и Гиббса с помощью уравнения Шишковского
- 4.13 Вывод уравнения Ленгмюра при совместном решении уравнений Гиббса и Шишковского
- 4.14 Правило Траубе
- V. Адсорбция на границе раздела твердое тело – раствор
- 5.1. Введение
- 5.2. Правило вытеснения
- 5.3. Когезия и адгезия
- 5.4. Смачивание и растекание
- 5.5. Практическое значение смачивания
- 5.6. Правило выравнивания полярностей
- 5.7. Адсорбция полимеров из растворов на твердой поверхности
- VI. Коллоидные пав
- 6.1. Введение
- 6.2. Производство и применение пав
- 6.3. Биоразлагаемость и токсичность
- 6.4. Классификация и общая характеристика пав
- 6.5. Свойства водных растворов пав. Мицеллообразование
- 6.6. Влияние различных факторов на ккм
- 6.6.1. Влияние длины углеводородного радикала
- 6.6.2. Влияние строения углеводородного радикала
- 6.6.3. Влияние добавок электролитов
- 6.6.4. Влияние полярных органических веществ
- 6.7. Термодинамика мицеллообразования в водной среде
- 6.8. Зависимость растворимости пав в воде от температуры
- 6.9. Мицеллообразование в неводных средах
- 6.10. Оценка дифильных свойств пав
- 6.11. Солюбилизация
- 6.12. Физико-химия моющего действия
- 6.13. Смеси ионных и неионных пав
- 6.14. Контрольные вопросы
- VII. Получение дисперсных систем
- 7.1. Введение
- 7.2. Конденсационные способы образования дисперсных систем
- Реакция обмена
- Реакции восстановления
- Реакция окисления
- Гидролиз солей
- Конденсация паров
- Замена растворителя
- 7.3. Строение мицелл различных золей
- Типы потенциалопределяющих ионов
- Принципы построения формулы мицелл
- 7.4. Диспергационные методы получения дисперсных систем
- 7.4.1. Механическое диспергирование
- 7.4.2. Эффект Ребиндера и его роль в диспергировании
- 7.4.3. Физико-химическое дробление осадков (пептизация)
- 7.5. Образование лиофильных коллоидных систем
- VIII. Молекулярно-кинетические свойства коллоидных систем
- 8.1. Введение
- 8.2. Броуновское движение
- 8.2.1. Природа броуновского движения
- 8.2.2. Общенаучное значение броуновского движения
- 8.2.3. Средний сдвиг частицы
- 8.3. Диффузия
- 8.3.1. Выражения для идеальной диффузии. Первый и второй законы Фика
- 8.3.2. Градиент концентрации при диффузии
- 8.3.3. Диффузия и проницаемость
- 8.4. Седиментация и методы седиментационного анализа
- 8.4.1. Гипсометрический закон
- 8.4.2. Седиментационное уравнение незаряженной частицы
- 8.4.3. Ультрацентрифуга
- 8.4.4. Скоростное ультрацентрифугирование
- 8.4.5. Равновесное ультрацентрифугирование
- 8.5. Контрольные вопросы
- IX. Оптические свойства коллоидных систем.
- 9.1. Явления, наблюдаемые при взаимодействии видимого света с веществом.
- 9.2. Рэлеевское рассеяние света.
- 9.3. Рассеяние малыми частицами.
- 9.4. Рассеяние большими частицами.
- 9.5. Анализ уравнения Рэлея.
- 9.6. Поглощение света дисперсными системами.
- 9.7. Турбидиметрический метод определения коллоидных частиц.
- 9.7.1. Дисперсные системы, подчиняющиеся уравнению Рэлея.
- 9.7.2. Дисперсные системы, не подчиняющиеся уравнению Рэлея.
- 9.8. Световая микроскопия.
- 9.8.1. Световая микроскопия.
- 9.8.2. Темнопольная микроскопия.
- 9.8.3. Электронная микроскопия Предел разрешения электронного микроскопа.
- Взаимодействие электронов с объектом.
- Характеристики изображения.
- Типы электронных микроскопов.
- Основные части электронного микроскопа и их назначение.
- Образцы для просвечивающей электронной микроскопии.
- Методы препарирования образцов.
- X. Электроповерхностные свойства дисперсных систем
- 10.1. Значение электрокинетических явлений в природе и технике
- 10.3. Связь поверхностного натяжения с электрическим потенциалом. Уравнение Липпмана.
- Строение двойного электрического слоя.
- 10.5. Изменение потенциала в дэс с изменением расстояния от поверхности.
- 10.6. Внутренняя часть дэс
- 10.7. Электрокинетические явления.
- 10.8. Уравнение Гельмгольца-Смолуховского для определения -потенциала.
- 10.9. Влияние электролитов на двойной электрический слой.
- 10.10. Влияние концентрации электролита.
- 10.11.Влияние валентности противоиона на дэс.
- 10.12. Влияние радиуса иона на дэс.
- Перезарядка золей индифферентными электролитами
- Действие неиндифферентных электролитов на двойной электрический слой
- Влияние температуры и разбавления на дэс
- XI. Устойчивость и коагуляция коллойдных систем
- 11.1. Понятие об устойчивости
- 11.2. Расклинивающее давление
- 11.3. Теория агрегативной устойчивости и коагуляции лиофобных дисперсных систем (теория длфо)
- 11.4. Кинетический подход к устойчивости дисперсных систем
- 11.5. Природа сил, действующих между частицами.
- Силы отталкивания
- 11.6.Коагуляция.
- 11.7. Механизм коагуляции электролитами по теории длфо.
- 11.8. Коагулирующее действие электролитов.
- 11.9. Правила коагуляции электролитами.
- XII. Структурно–механические свойства дисперсных систем
- 12.1. Основные понятия. Реология как метод исследования структуры дисперсных систем
- 12.2. Идеальные законы реологии
- 12.3. Моделирование реологических свойств тел
- 12.8. Реологические свойства твердообразных тел
- XIII. Растворы высокомолекулярных соединений. Основные положения статистики полимерных цепей
- 13.1. Гибкость и размеры цепи
- 13.2. Количественные характеристики размеров макромолекул
- 13.3. Свойства Гауссова клубка
- 13.4. Состояния полимеров в растворе
- 13.5. Термодинамика растворения полимеров
- 13.6. Набухание как первая стадия растворения
- 13.7. Разбавленные растворы полимеров
- 13.8. Осмотическое давление растворов
- 13.9. Термодинамическое сродство растворителя к полимеру
- 13.10. Взаимодействия в растворах полимеров
- 13.11. Концентрированные растворы полимеров
- 13.12. Термодинамическая равновесность растворов полимеров и подчинение их правилу фаз