6.11. Солюбилизация
Солюбилизацией называется захват ядром мицеллы третьего компонента мицеллярного раствора. Прямые мицеллы солюбилизируют углеводороды, обратные мицеллы – воду и полярные вещества.
Солюбилизация олефильных веществ приводит к более или менее глубокой перестройке мицеллярной структуры раствора. При солюбилизации повышается мицеллярная масса и размер мицелл.
Процесс солюбилизации, также как и мицеллообразование является энтропийным по своей природе, т. е. его движущая сила – положительное изменение энтропии. Это находит изменение с позиций о гидрофобных взаимодействиях в воде. Как уже отмечалось, молекулы углеводородов в водной среде промотируют структурообразование растворителя – возникновение дополнительных водородных связей между молекулами воды, в результате чего вокруг неполярных молекул возникает «айcбергова» оболочка из структурированной воды. Это приводит к уменьшению энтальпии и значительной убыли энтропии. Внутримицеллярное растворение углеводорода сопряжено с разрушением «айcберговых» структур и сопровождается поглощением тепла (∆Н+), однако возрастание энтропии, обусловленное уменьшением степени структурированности воды, компенсирует энтальпийный фактор и обеспечивает убыль свободной энергии (∆Fs>0),что делает процесс термодинамически выгодным.
Увеличение олеофильности мицелл и усиление гидрофобных взаимодействий способствует солюбилизации. Поэтому увеличение длины углеводородного радикала улучшает солюбилизацию, а введение в углеводородный радикал ароматических циклов, кратных связей или гетероатомов уменьшает её.
Солюбилизация увеличивается при уменьшении олеофильности солюбилизата. В мицеллярных растворах жирных кислот количество растворенного углеводорода уменьшается в ряду: бензол > толуол > этилбензол > н.гептан > изооктан > н.октан. Это связано с уменьшением растворимости углеводорода в водной фазе. Хотя мицеллярная растворимость увеличивается, общая растворимость уменьшается.
Солюбилизирующаяя способность – одно из практических свойств, определяющих применение коллоидных ПАВ в народном хозяйстве и в быту.
Важную роль явление солюбилизации играет при синтезе каучуков и латексов эмульсионным способом. Все основные стадии процесса полимеризации (инициирование, рост, обрыв цепи) осуществляются в мицеллах коллоидного ПАВ, содержащего солюбилизированный мономер.
В последнее время всё большее внимание привлекает мицеллярный катализ – ускорение или замедление реакции в результате солюбилизации реагентов (или одного из них) мицеллами коллоидного ПАВ. Возрастание константы скорости реакции при протекании её в мицеллах может достигать 1 ÷ 2 порядков по сравнению со скоростью реакции в воде.
В настоящее время развились новые области химии, которые основаны на использовании организованных форм синтетических ПАВ для создания мембраноподобных систем, позволяющих синтезировать ультра дисперсные частицы (наночастицы) путем проведения реакции в мицеллах ПАВ, содержащих солюбилизирующий исходный реагент. Эти ультрадисперсные частицы позволяют получать принципиально новые катализаторы, полупроводники, магнитные частицы, наполнители полимеров. Так, ультрадисперсные полупроводники применяются для фотосенсибилизированного восстановления воды до водорода в присутствии донора электронов. Это является крупным шагом на пути к солнечно-водородной энергетике и к пониманию механизмов фотосинтеза.
Солюбилизация имеет большое значение для повышения полноты извлечения нефти из пластов с помощью мицеллярных растворов.
Явление солюбилизации используется при изготовлении эмульсионных смазочных и охлаждающих жидкостей, фармацевтических препаратов, косметических средств.
Существенное значение солюбилизация имеет в живых организмах – в процессах миграции и усвоения различных олефильных веществ, например жиров, лекарственных средств, при взаимодействии белков с липидами.
Натриевые соли желчных кислот: холановой и дезоксихолевой обладают очень высокой солибилизирующей способностью. Благодаря этому они способствуют первой стадии усвоения жиров в организме. Эти соли солюбилизируют или эмульгируют жиры, вследствие чего происходит их всасывание и переваривание в кишечнике.
Фрагментирование клеточных мембран коллоидными ПАВ объясняется солюбилизацией липидов. В результате солюбилизации образуются термодинамически устойчивые дисперсные системы, называемые микроэмульсиями. Микроэмульсии образуются при высокой концентрации ПАВ и больших значениях относительной солюбилизации, когда размер мицелл становится значительным.
- I. Введение
- 1.1. Место коллоидной химии в общей системе наук
- 1.2. Краткие исторические сведения
- 1.3. Предмет коллоидной химии
- 1.4. Физические и химические поверхностные явления
- 1.5. Основные признаки объектов коллоидной химии
- 1.6. Фундаментальные особенности ультрадисперсного (коллоидного) состояния вещества
- 1.7. Влияние дисперсности на свойства вещества
- 1.8. Значение коллоидной химии в природе и технике
- II. Поверхностные явления и адсорбция
- 2.1. Классификация поверхностных явлений
- 2.2. Основы термодинамики поверхностного слоя
- 2.3. Интенсивные свойства гетерогенных систем
- 2.4. Экстенсивные свойства гетерогенных систем
- 2.5. Метод избыточных величин Гиббса
- 2.8. Уравнение Гиббса для плоского поверхностного слоя
- 2.9. Понятие об адсорбции
- III. Адсорбция на различных границах раздела
- 3.1. Понятие об адсорбции
- 3.2 Количественные характеристики адсорбции
- 3.3. Типы адсорбционных зависимостей
- 3.4. Адсорбция газов и паров на твердом теле
- 3.5. Адсорбция как обратимый экзотермический процесс
- 3.6. Физическая адсорбция и хемосорбция
- 3.7. Значение координационных связей при хемосорбции
- 3.8. Природа адсорбционных сил
- 3.9. Изотермы адсорбции
- 3.10. Кинетика адсорбции
- 3.11. Классическая теория адсорбции
- 3.11.1. Теория мономолекулярной адсорбции Ленгмюра
- Вывод уравнения Ленгмюра.
- Анализ уравнения Ленгмюра
- Полимолекулярная (потенциальная) теория адсорбции Поляни
- 3.11.3. Теория Брунауэра, Эииета и Теллера (бэт).
- 3.11.4. Схема полимолекулярной адсорбции
- 4.1 Поведение растворенных веществ на границе раствора с газом
- 4.2 Поверхностная активность.
- 4.3 Поверхностно – инактивные вещества
- 4.4 Вывод адсорбционного уравнения Гиббса
- 4.5 Строение адсорбционного слоя пав на границе раствора с газом
- 4.6 Уравнение состояния двумерного газа.
- 4.7 Диаграммы состояния поверхностных пленок
- 4.8 Химические реакции в поверхностных пленках.
- 4.9 Самоорганизованные монослои и пленки, перенесенные на твердую подложку с поверхности вода-воздух (пленки Ленгмюра –Блоджетт).
- 4.10 Двухсторонние пленки
- 4.11 Вид изотермы поверхностного натяжения. Уравнение Шишковского
- 4.12 Связь уравнений Ленгмюра и Гиббса с помощью уравнения Шишковского
- 4.13 Вывод уравнения Ленгмюра при совместном решении уравнений Гиббса и Шишковского
- 4.14 Правило Траубе
- V. Адсорбция на границе раздела твердое тело – раствор
- 5.1. Введение
- 5.2. Правило вытеснения
- 5.3. Когезия и адгезия
- 5.4. Смачивание и растекание
- 5.5. Практическое значение смачивания
- 5.6. Правило выравнивания полярностей
- 5.7. Адсорбция полимеров из растворов на твердой поверхности
- VI. Коллоидные пав
- 6.1. Введение
- 6.2. Производство и применение пав
- 6.3. Биоразлагаемость и токсичность
- 6.4. Классификация и общая характеристика пав
- 6.5. Свойства водных растворов пав. Мицеллообразование
- 6.6. Влияние различных факторов на ккм
- 6.6.1. Влияние длины углеводородного радикала
- 6.6.2. Влияние строения углеводородного радикала
- 6.6.3. Влияние добавок электролитов
- 6.6.4. Влияние полярных органических веществ
- 6.7. Термодинамика мицеллообразования в водной среде
- 6.8. Зависимость растворимости пав в воде от температуры
- 6.9. Мицеллообразование в неводных средах
- 6.10. Оценка дифильных свойств пав
- 6.11. Солюбилизация
- 6.12. Физико-химия моющего действия
- 6.13. Смеси ионных и неионных пав
- 6.14. Контрольные вопросы
- VII. Получение дисперсных систем
- 7.1. Введение
- 7.2. Конденсационные способы образования дисперсных систем
- Реакция обмена
- Реакции восстановления
- Реакция окисления
- Гидролиз солей
- Конденсация паров
- Замена растворителя
- 7.3. Строение мицелл различных золей
- Типы потенциалопределяющих ионов
- Принципы построения формулы мицелл
- 7.4. Диспергационные методы получения дисперсных систем
- 7.4.1. Механическое диспергирование
- 7.4.2. Эффект Ребиндера и его роль в диспергировании
- 7.4.3. Физико-химическое дробление осадков (пептизация)
- 7.5. Образование лиофильных коллоидных систем
- VIII. Молекулярно-кинетические свойства коллоидных систем
- 8.1. Введение
- 8.2. Броуновское движение
- 8.2.1. Природа броуновского движения
- 8.2.2. Общенаучное значение броуновского движения
- 8.2.3. Средний сдвиг частицы
- 8.3. Диффузия
- 8.3.1. Выражения для идеальной диффузии. Первый и второй законы Фика
- 8.3.2. Градиент концентрации при диффузии
- 8.3.3. Диффузия и проницаемость
- 8.4. Седиментация и методы седиментационного анализа
- 8.4.1. Гипсометрический закон
- 8.4.2. Седиментационное уравнение незаряженной частицы
- 8.4.3. Ультрацентрифуга
- 8.4.4. Скоростное ультрацентрифугирование
- 8.4.5. Равновесное ультрацентрифугирование
- 8.5. Контрольные вопросы
- IX. Оптические свойства коллоидных систем.
- 9.1. Явления, наблюдаемые при взаимодействии видимого света с веществом.
- 9.2. Рэлеевское рассеяние света.
- 9.3. Рассеяние малыми частицами.
- 9.4. Рассеяние большими частицами.
- 9.5. Анализ уравнения Рэлея.
- 9.6. Поглощение света дисперсными системами.
- 9.7. Турбидиметрический метод определения коллоидных частиц.
- 9.7.1. Дисперсные системы, подчиняющиеся уравнению Рэлея.
- 9.7.2. Дисперсные системы, не подчиняющиеся уравнению Рэлея.
- 9.8. Световая микроскопия.
- 9.8.1. Световая микроскопия.
- 9.8.2. Темнопольная микроскопия.
- 9.8.3. Электронная микроскопия Предел разрешения электронного микроскопа.
- Взаимодействие электронов с объектом.
- Характеристики изображения.
- Типы электронных микроскопов.
- Основные части электронного микроскопа и их назначение.
- Образцы для просвечивающей электронной микроскопии.
- Методы препарирования образцов.
- X. Электроповерхностные свойства дисперсных систем
- 10.1. Значение электрокинетических явлений в природе и технике
- 10.3. Связь поверхностного натяжения с электрическим потенциалом. Уравнение Липпмана.
- Строение двойного электрического слоя.
- 10.5. Изменение потенциала в дэс с изменением расстояния от поверхности.
- 10.6. Внутренняя часть дэс
- 10.7. Электрокинетические явления.
- 10.8. Уравнение Гельмгольца-Смолуховского для определения -потенциала.
- 10.9. Влияние электролитов на двойной электрический слой.
- 10.10. Влияние концентрации электролита.
- 10.11.Влияние валентности противоиона на дэс.
- 10.12. Влияние радиуса иона на дэс.
- Перезарядка золей индифферентными электролитами
- Действие неиндифферентных электролитов на двойной электрический слой
- Влияние температуры и разбавления на дэс
- XI. Устойчивость и коагуляция коллойдных систем
- 11.1. Понятие об устойчивости
- 11.2. Расклинивающее давление
- 11.3. Теория агрегативной устойчивости и коагуляции лиофобных дисперсных систем (теория длфо)
- 11.4. Кинетический подход к устойчивости дисперсных систем
- 11.5. Природа сил, действующих между частицами.
- Силы отталкивания
- 11.6.Коагуляция.
- 11.7. Механизм коагуляции электролитами по теории длфо.
- 11.8. Коагулирующее действие электролитов.
- 11.9. Правила коагуляции электролитами.
- XII. Структурно–механические свойства дисперсных систем
- 12.1. Основные понятия. Реология как метод исследования структуры дисперсных систем
- 12.2. Идеальные законы реологии
- 12.3. Моделирование реологических свойств тел
- 12.8. Реологические свойства твердообразных тел
- XIII. Растворы высокомолекулярных соединений. Основные положения статистики полимерных цепей
- 13.1. Гибкость и размеры цепи
- 13.2. Количественные характеристики размеров макромолекул
- 13.3. Свойства Гауссова клубка
- 13.4. Состояния полимеров в растворе
- 13.5. Термодинамика растворения полимеров
- 13.6. Набухание как первая стадия растворения
- 13.7. Разбавленные растворы полимеров
- 13.8. Осмотическое давление растворов
- 13.9. Термодинамическое сродство растворителя к полимеру
- 13.10. Взаимодействия в растворах полимеров
- 13.11. Концентрированные растворы полимеров
- 13.12. Термодинамическая равновесность растворов полимеров и подчинение их правилу фаз