Нуклеотиды и нуклеозиды
Нуклеотиды являются компонентами нуклеиновых кислот. ДНК и РНК – это полимеры, построенные из мононуклеотидов. Нуклеотиды присутствуют во всех клетках, выполняя ряд жизненно важных функций:
ДНК построена из дезоксирибонуклеотидов, является хранителем наследственной информации, принимает участие в реализации этой информации – в биосинтезе белка.
РНК построена из рибонуклеотидов, участвует в синтезе белка, является носителем генетической информации у PHK-содержащих вирусов.
Пуриновые рибонуклеотиды выполняют функции универсальных источников энергии (АТФ).
Выполняют роль регуляторных сигналов – вторичных переносчиков (мессенджеров) – ц-АМФ, ц-ГМФ, аллостерических регуляторов.
Входят в состав коферментов ФАД, ФМН, НАД, НАДФ, служат переносчиком метильных групп (S-аденозинметионин). Пиримидиновые нуклеотиды функционируют в качестве макроэргических посредников в углеводном обмене (УДФ-глюкоза, УДФ-галактоза), в синтезе липидов – ЦДФ-ацилглицерол.
Нуклеотид состоит из трех компонентов – азотистого основания, углевода, остатка фосфорной кислоты.
Азотистые основания, входящие в состав нуклеиновых кислот, являются производными ароматических гетероциклических соединений – пурина и пиримидина. Производные пурина аденин (А) и гуанин (Г), а производные пиримидина – цитозин (Ц), урацил (У), тимин (T). В состав ДНК входят аденин, гуанин, цитозин, тимин; в РНК вместо тимина присутствует урацил (рис.3.1.).
Пурин Аденин Гуанин
(6-аминопурин) (2-амино-6-оксипурин)
Рис.3.1. Азотистые основания, входящие в состав
нуклеиновых кислот.
Углеводным компонентом нуклеотидов являются (β-D-рибофураноза (рибоза) и β-2'-дезокси-D-рибофураноза (дезоксирибоза) (рис.3.2.). Углеродные атомы пентозы нумеруются цифрами со знаком «штрих» для того, чтобы можно было отличить их от атомов азотистого основания (например, 5-й углеродный атом обозначают С-5' или 5'). У второго углеродного атома гидроксильная группа -ОН у рибозы, в дезоксирибонуклеотидах представлена атомом водорода -H. Считают, что отсутствие атома кислорода у второго атома углерода дезоксирибозы способствует компактности укладки молекулы ДНК, делает более прочной связь между 2-м и 3-м углеродом рибозы, что в целом увеличивает стабильность молекулы ДНК и консервативность как хранителя наследственности.
β-D-рибофураноза β-2'-дезокси-D-рибофураноза
(рибоза) (дезоксирибоза)
Рис.3.2. Углеводные компоненты нуклеотидов.
Азотистые основания существуют в таутомерных лактим- или лактамных формах. В составе нуклеиновых кислот все оксопроизводные азотистых оснований присутствуют в лактамной форме
Лактим (енол-форма) Лактам (кето-форма)
Нуклеозиды образуются в результате образования N-гликозидной связи между 9-ым атомом азота у пуринов и 1-м атомом азота у пиримидинов с пентозой, рибозой или 2'-дезоксирибозой (рис.3.3.).
Фосфорные эфиры нуклеозидов называются нуклеотидами:
Названия нуклеотидов и нуклеозидов представлены в таблице 3.1.
Если к аденозину присоединяется остаток фосфорной кислоты в 5'-положении, то образуется 5'-адениловая кислота или аденозин-5'-монофосфат; если в 3'-положении, то 3'-адениловая кислота или аденозин-3'-монофосфат. К нуклеозидмонофосфату могут присоединяться посредством фосфоангидридной связи еще один или два остатка фосфорной кислоты. При этом образуются нуклеозиды- и нуклеозидтрифосфаты. Сокращенные обозначения моно-, ди- и трифосфатов представлены в таблице 3.1.
Рис. 3.3. Образование N-гликозидной связи между азотистым основанием и углеводным компонентом.
Таблица 3.1 Нуклеозидмоно-, ди- и трифосфаты
Нуклеозид | букв. обозн. | монофосфаты | дифосфаты | трифосфаты |
Аденозин Гуанозин Цитидин Уридин Тимидин | А Г Ц У Т | АМФ ГМФ ЦМФ УМФ ТМФ | АДФ ГДФ ЦДФ УДФ ТДФ | АТФ ГТФ ЦТФ УТФ ТТФ |
Состав нуклеиновых кислот
| ДНК | РНК |
Пуриновые азотистые Основания Пиримидиновые азотистые основания Углеводный компонент Неорганическое вещество | Аденин Гуанин
Цитозин Тимин
Дезоксирибоза
Фосфорная кислота | Аденин Гуанин
Цитозин Урацил
Рибоза
Фосфорная кислота |
- Биохимия животных Электронный дидактический комплекс (эдк)
- Физическая химия вода
- Активная реакция водных растворов
- Ионное произведение воды. Водородный показатель
- Методы определения рН среды
- Роль активной реакции среды в биологических процессах
- Буферные pacтворы, состав, механизм действия
- Буферная емкость
- Биологическое значение буферных систем
- Коллоидная химия
- Классификация дисперсных систем
- Поверхностные явления
- Адсорбция
- Коллоидные растворы (золи) Методы получения
- Строение коллоидных частиц
- Коагуляция. Седиментация. Пептизация
- Молекулярно-кинетические свойства коллоидных растворов
- Осмотическое давление
- Биологическое значение явления осмоса
- Механизмы, участвующие в сохранении изоосмии:
- Оптические свойства коллоидных систем
- Растворы высокомолекулярных соединений
- Свободная и связанная вода в коллоидных pacтвopax
- Свойства растворов вмс
- Денатурация
- 2. Белки; биологическая роль Аминокислоты
- Содержание белков в организме и тканях
- Методы выделения белков
- Методы фракционирования и очистки белков
- Физико-химические свойства белков
- Аминокислоты
- Ациклические аминокислоты
- Структура белковой молекулы
- Классификация белков
- Химия сложных белков
- 3. Нуклеиновые кислоты
- Нуклеотиды и нуклеозиды
- Структура днк
- Рибонуклеиновые кислоты
- 4. Ферменты
- Биосинтез и клеточная локализация ферментов
- Химическая природа ферментов
- Строение ферментов
- Активный центр фермента
- Регуляция активности ферментов
- Механизм действия ферментов
- Основные свойства ферментов
- 2. Зависимость активности ферментов от рН среды.
- Факторы, определяющие активность ферментов
- Активирование и ингибирование ферментов
- Типы ингибирования
- Классификация и номенклатура ферментов
- Применение ферментов.
- Использование иммобилизованных ферментов для производства биологических соединений
- Иммуноферментный анализ и его использование в ветеринарии
- 5. Химия витаминов
- Классификация и номенклатура витаминов
- I. Жирорастворимые витамины
- II. Витамины, растворимые в воде
- Витамин d, антирахитический, кальциферол
- Витамин e, антистерильный, токоферолы
- Витамин к, антигеморрагический (филлохинон)
- Витамин q (убихинон)
- Водорастворимые витамины
- Витамин b1, антиневритный, тиамин
- Витамин b2, рибофлавин
- Витамин b3, пантотеновая кислота
- Витамин b5, pp, никотинамид, ниацин, антипеллагрический
- Витамин b6, адермин, пиридоксол
- Витамин b12, кобаламин, антианемический
- Фолиевая кислота
- Витамин с (аскорбиновая кислота)
- Биотин, витамин h
- 6. Гормоны
- Гормоны гипофиза
- Поджелудочная железа
- Гормоны щитовидной железы
- Гормоны надпочечников
- Гормоны коры надпочечников
- Гормоны половых желез
- Гормоны тимуса (вилочковой железы)
- Гормоны местного действия
- 7. Обмен веществ и энергии
- Основные этапы обмена веществ
- Биологическое окисление
- Окислительное фосфорилирование
- Токсичность кислорода
- 8. Химия и обмен углеводов
- Моносахариды
- Производные моносахаридов.
- Полисахариды (гликаны)
- Гетерополисахариды (гетерогликаны)
- Обмен углеводов
- Катаболизм глюкозы
- Гликогенолиз
- Биосинтез углеводов
- Биосинтез гликогена (гликогенез)
- Регуляция углеводного обмена.
- 9. Химия и обмен липидов
- Химическое строение нейтральных жиров
- Жирные кислоты.
- Нейтральные гликолипиды
- Фосфолипиды (фосфатиды)
- Сфинголипиды
- Двойной липидный слой мембран
- Обмен липидов
- Переваривание липидов в желудочно-кишечном тракте
- Промежуточный обмен липидов
- Энергетический баланс β-окисления жирных кислот
- Метаболизм ацетил-коэнзима а
- Пути образования кетоновых тел
- Биосинтез липидов
- Метаболизм стеринов и стеридов
- Липосомы
- 10. Обмен белков
- Биологическая ценность белков
- Нормы белка в питании животных
- Белковые резервы организма
- Обмен простых белков
- Переваривание белков в желудочно-кишечном тракте моногастричных животных
- Переваривание белков в кишечнике.
- Особенности переваривания белков у жвачных животных
- Дезаминирование аминокислот
- Трансаминирование – непрямой путь дезаминирования аминокислот
- Декарбоксилирование аминокислот
- Окислительное расщепление аминокислот
- Особенности обмена отдельных аминокислот
- 11. Биосинтез белка
- Генетический код
- Этапы синтеза белка
- Мультиферментный механизм синтеза белка
- 12.Обмен нуклеиновых кислот Переваривание нуклеиновых кислот в желудочно-кишечном тракте
- Промежуточный обмен нуклеиновых кислот Распад нуклеиновых кислот в тканях
- Пиримидиновые основания
- Биосинтез нуклеиновых кислот
- Рекомбинантные молекулы и проблемы генной инженерии
- Клонирование животных
- Метод молекулярной гибридизации
- Принцип метода
- Способы гибридизации
- Метод блоттинга по Саузерну
- Полимеразная цепная реакция (пцр)
- Необходимые приборы и реактивы
- 13. Обмен воды и солей
- Вода, ее содержание и роль в организме
- Потребность животного организма в минеральных веществах, их поступление и выделение
- Микроэлементы
- 14. Биохимия крови
- Физико-химические свойства крови
- Буферные системы крови
- Плазма крови и ее химический состав
- Белки плазмы и сыворотки крови
- Небелковые азотистые вещества крови
- Форменные элементы крови
- 15. Биохимия мышечной ткани
- Механизм сокращения мышцы
- Азотистые экстрактивные вещества мышц
- Минеральные вещества
- Окоченение мышц
- 16. Биохимия молока и молокообразования
- 17. Биохимия почек и мочи
- Патологические компоненты мочи
- Особенности мочи птиц
- 18. Биохимия кожи и шерсти
- 19. Биохимия яйца
- Биосинтез компонентов яйца
- Предметный указатель
- Приложения
- Рекомендуемая литература
- Тесты для проверки биохимических
- Глава 8. Химия обмена углеводов
- 24. Сложноэфирные связи в молекулах триацилглицеролов подвергаются ферментативному гидролизу при участии:
- Глава 11. Синтез белка
- Глава 12. Обмен нуклеиновых кислот
- Глава 13. Биохимия почек и мочи