Окислительное расщепление аминокислот
Большую часть энергии организм получает в результате окисления углеводов и нейтральных жиров (до 90 %). Остальную часть ~ 10% за счет окисления аминокислот. Аминокислоты, прежде всего, используются для синтеза белка. Окисление их происходит:
1) если аминокислоты, образующиеся при обновлении белков не используются для синтеза новых белков;
2) если в организм поступает избыток белка;
3) в период голодания или при сахарном диабете, когда нет углеводов или их усвоение нарушено, в качестве источника энергии используются аминокислоты.
Во всех этих ситуациях аминокислоты теряют свои аминогруппы и превращаются в соответствующие α-кетокислоты, которые затем окисляются до СО2 и H2O. Частично это окисление идет через цикл трикарбоновых кислот. В результате дезаминирования и окисления образуются пировиноградная кислота, ацетил-КоА, ацетоацетил-КоА, α-кетоглутаровая кислота, сукцинил-КоА, фумаровая кислота. Некоторые аминокислоты могут превращаться в глюкозу, а другие – в кетоновые тела.
Пути обезвреживания аммиака в тканях животных
Аммиак токсичен, и накопление его в организме может привести к смерти. Существуют следующие пути обезвреживания аммиака:
1. Синтез аммонийных солей.
2. Синтез амидов дикарбоновых аминокислот.
3. Синтез мочевины.
Синтез аммонийных солей происходит ограниченно в почках, это как дополнительное защитное приспособление организма при ацидозах. Аммиак и кетокислоты частично используются для ресинтеза аминокислот и для синтеза других азотистых веществ. Кроме того, в тканях почек аммиак участвует в процессе обезвреживания оргинических и неорганических кислот, образуя с ними нейтральные и кислые соли:
R – COOH + NH3 → R – COONH4;
H2SO4 + 2 NH3 → (NH4)2SO4;
H3PO4 + NH3 → NH4H2PO4
Этим путем организм защищается от потери с мочой при выведениикислот знпачительного количества катионов (Na, K, отчасти Са, Mg), что могло бы привести к резкому снижению щелочного резерва крови. Количество аммонийных солей, выводимых с мочой, заметно повышается при ацидозе, так как аммиак используется для нейтрализации кислоты. Одним из путей связывания и обезвреживания аммиака является использование его для образования амидной связи глутамина и аспарагина. При этом из глутаминовой кислоты под действием фермента глутаминсинтетазы синтезируется глутамин, из аспарагиновой кислоты при участии аспарагинсинтетазы – аспарагин:
Этим путем происходит устранение аммиака во многих органах (мозг, сетчатка, почки, печень, мышцы). Амиды глутаминовой и аспарагиновой кислот могут образоваться и тогда, когда эти аминокислоты находятся в структуре белка, то есть акцептором аммиака может быть не только свободная аминокислота, но и белки, в состав которых они входят. Аспарагин и глутамин доставляются в печень и используются в синтезе мочевины. Аммиак переносится в печень и с помощью аланина (глюкозо-аланиновый цикл). Этот цикл обеспечивает перенос аминогрупп из скелетных мышц в печень, где они превращаются в мочевину, а работающие мышцы получают глюкозу. В печени глюкоза синтезируется из углеродного скелета аланина. В работающей мышце из α-кетоглутаровой кислоты образуется глутаминовая кислота, которая затем передает аминную группу - NH2 пировиноградной кислоте, в результате синтезируется аланин – нейтральная аминокислота. Схематически указанный цикл выглядит следующим образом:
Глутаминовая кислота + пировиноградная кислота ↔
↔ α-кетоглутаровая кислота + аланин
Рис. 10.1. Глюкозо-аланиновый цикл.
Этот цикл выполняет две функции: 1) переносит аминогруппы из скелетных мышц в печень, где они превращаются в мочевину;
2) обеспечивает работающие мышцы глюкозой, поступающей с кровью из печени, где для ее образования используется углеродный скелет аланина.
Образование мочевины – основной путь обезвреживания аммиака. Этот процесс изучали в лаборатории И.П.Павлова. Показано, что мочевина синтезируется в печени из аммиака, CO2 и воды.
Мочевина выводится с мочой в качестве главного конечного продукта белкового, соответственно аминокислотного обмена. На долю мочевины приходится до 80-85% всего азота мочи. Главным местом синтеза мочевины в организме является печень. Сейчас доказано, что синтез мочевины происходит в несколько этапов.
1 стадия – образование карбамоилфосфата происходит в митохондриях под действием фермента карбомоилфосфат-синтетазы:
На следующей стадии с участием орнитина синтезируется цитруллин:
Цитруллин переходит из митохондрий в цитозоль клеток печени. После этого в цикл вводится вторая аминогруппа в форме аспарагиновой кислоты. Происходит конденсация молекул цитруллина и аспарагиновой кислоты с образованием аргинин-янтарной кислоты.
Цитруллин аспарагиновая аргинин-янтарная
кислота кислота
Аргинин-янтарная кислота расщепляется на аргинин и фумаровую кислоты.
Под действием аргиназы аргинин гидролизуется, образуется мочевина и орнитин. В дальнейшем орнитин поступает в митохондрии и может включиться в новый цикл обезвреживания аммиака, а мочевина выделяется с мочой.
Таким образом, в синтезе одной молекулы мочевины нейтрализуется две молекулы NH3 и CO2 (HCO3), что также имеет значение в поддержании рН. Для синтеза одной молекулы мочевины расходуется 3 молекулы АТФ, в том числе две при синтезе карбомоилфосфата, одна для образования аргинин-янтарной кислоты; фумаровая кислота может превращаться в яблочную и щавелевоуксусную кислоты (цикл Кребса), а последняя в результате трансаминирования или восстановительного аминирования может превратиться в аспарагиновую кислоту. Некоторая часть азота аминокислот выделяется из организма в виде креатинина, который образуется из креатина и креатинфосфата.
Из всего азота мочи на долю мочевины приходится до 80-90%, аммонийных солей – 6 %. При избыточном кормлении белком доля азота мочевины возрастает, а при недостаточном белковом кормлении снижается до 60 %.
У птиц и рептилий – нейтрализация аммиака происходит путем образования мочевой кислоты. Птичий помет на птицефабриках - это источник азотсодержащего удобрения (мочевая кислота).
- Биохимия животных Электронный дидактический комплекс (эдк)
- Физическая химия вода
- Активная реакция водных растворов
- Ионное произведение воды. Водородный показатель
- Методы определения рН среды
- Роль активной реакции среды в биологических процессах
- Буферные pacтворы, состав, механизм действия
- Буферная емкость
- Биологическое значение буферных систем
- Коллоидная химия
- Классификация дисперсных систем
- Поверхностные явления
- Адсорбция
- Коллоидные растворы (золи) Методы получения
- Строение коллоидных частиц
- Коагуляция. Седиментация. Пептизация
- Молекулярно-кинетические свойства коллоидных растворов
- Осмотическое давление
- Биологическое значение явления осмоса
- Механизмы, участвующие в сохранении изоосмии:
- Оптические свойства коллоидных систем
- Растворы высокомолекулярных соединений
- Свободная и связанная вода в коллоидных pacтвopax
- Свойства растворов вмс
- Денатурация
- 2. Белки; биологическая роль Аминокислоты
- Содержание белков в организме и тканях
- Методы выделения белков
- Методы фракционирования и очистки белков
- Физико-химические свойства белков
- Аминокислоты
- Ациклические аминокислоты
- Структура белковой молекулы
- Классификация белков
- Химия сложных белков
- 3. Нуклеиновые кислоты
- Нуклеотиды и нуклеозиды
- Структура днк
- Рибонуклеиновые кислоты
- 4. Ферменты
- Биосинтез и клеточная локализация ферментов
- Химическая природа ферментов
- Строение ферментов
- Активный центр фермента
- Регуляция активности ферментов
- Механизм действия ферментов
- Основные свойства ферментов
- 2. Зависимость активности ферментов от рН среды.
- Факторы, определяющие активность ферментов
- Активирование и ингибирование ферментов
- Типы ингибирования
- Классификация и номенклатура ферментов
- Применение ферментов.
- Использование иммобилизованных ферментов для производства биологических соединений
- Иммуноферментный анализ и его использование в ветеринарии
- 5. Химия витаминов
- Классификация и номенклатура витаминов
- I. Жирорастворимые витамины
- II. Витамины, растворимые в воде
- Витамин d, антирахитический, кальциферол
- Витамин e, антистерильный, токоферолы
- Витамин к, антигеморрагический (филлохинон)
- Витамин q (убихинон)
- Водорастворимые витамины
- Витамин b1, антиневритный, тиамин
- Витамин b2, рибофлавин
- Витамин b3, пантотеновая кислота
- Витамин b5, pp, никотинамид, ниацин, антипеллагрический
- Витамин b6, адермин, пиридоксол
- Витамин b12, кобаламин, антианемический
- Фолиевая кислота
- Витамин с (аскорбиновая кислота)
- Биотин, витамин h
- 6. Гормоны
- Гормоны гипофиза
- Поджелудочная железа
- Гормоны щитовидной железы
- Гормоны надпочечников
- Гормоны коры надпочечников
- Гормоны половых желез
- Гормоны тимуса (вилочковой железы)
- Гормоны местного действия
- 7. Обмен веществ и энергии
- Основные этапы обмена веществ
- Биологическое окисление
- Окислительное фосфорилирование
- Токсичность кислорода
- 8. Химия и обмен углеводов
- Моносахариды
- Производные моносахаридов.
- Полисахариды (гликаны)
- Гетерополисахариды (гетерогликаны)
- Обмен углеводов
- Катаболизм глюкозы
- Гликогенолиз
- Биосинтез углеводов
- Биосинтез гликогена (гликогенез)
- Регуляция углеводного обмена.
- 9. Химия и обмен липидов
- Химическое строение нейтральных жиров
- Жирные кислоты.
- Нейтральные гликолипиды
- Фосфолипиды (фосфатиды)
- Сфинголипиды
- Двойной липидный слой мембран
- Обмен липидов
- Переваривание липидов в желудочно-кишечном тракте
- Промежуточный обмен липидов
- Энергетический баланс β-окисления жирных кислот
- Метаболизм ацетил-коэнзима а
- Пути образования кетоновых тел
- Биосинтез липидов
- Метаболизм стеринов и стеридов
- Липосомы
- 10. Обмен белков
- Биологическая ценность белков
- Нормы белка в питании животных
- Белковые резервы организма
- Обмен простых белков
- Переваривание белков в желудочно-кишечном тракте моногастричных животных
- Переваривание белков в кишечнике.
- Особенности переваривания белков у жвачных животных
- Дезаминирование аминокислот
- Трансаминирование – непрямой путь дезаминирования аминокислот
- Декарбоксилирование аминокислот
- Окислительное расщепление аминокислот
- Особенности обмена отдельных аминокислот
- 11. Биосинтез белка
- Генетический код
- Этапы синтеза белка
- Мультиферментный механизм синтеза белка
- 12.Обмен нуклеиновых кислот Переваривание нуклеиновых кислот в желудочно-кишечном тракте
- Промежуточный обмен нуклеиновых кислот Распад нуклеиновых кислот в тканях
- Пиримидиновые основания
- Биосинтез нуклеиновых кислот
- Рекомбинантные молекулы и проблемы генной инженерии
- Клонирование животных
- Метод молекулярной гибридизации
- Принцип метода
- Способы гибридизации
- Метод блоттинга по Саузерну
- Полимеразная цепная реакция (пцр)
- Необходимые приборы и реактивы
- 13. Обмен воды и солей
- Вода, ее содержание и роль в организме
- Потребность животного организма в минеральных веществах, их поступление и выделение
- Микроэлементы
- 14. Биохимия крови
- Физико-химические свойства крови
- Буферные системы крови
- Плазма крови и ее химический состав
- Белки плазмы и сыворотки крови
- Небелковые азотистые вещества крови
- Форменные элементы крови
- 15. Биохимия мышечной ткани
- Механизм сокращения мышцы
- Азотистые экстрактивные вещества мышц
- Минеральные вещества
- Окоченение мышц
- 16. Биохимия молока и молокообразования
- 17. Биохимия почек и мочи
- Патологические компоненты мочи
- Особенности мочи птиц
- 18. Биохимия кожи и шерсти
- 19. Биохимия яйца
- Биосинтез компонентов яйца
- Предметный указатель
- Приложения
- Рекомендуемая литература
- Тесты для проверки биохимических
- Глава 8. Химия обмена углеводов
- 24. Сложноэфирные связи в молекулах триацилглицеролов подвергаются ферментативному гидролизу при участии:
- Глава 11. Синтез белка
- Глава 12. Обмен нуклеиновых кислот
- Глава 13. Биохимия почек и мочи