Аминокислоты
Для изучения аминокислотного состава белков пользуются кислотным (HCl), щелочным (NaOH) и ферментативным гидролизом. При гидролизе чистого белка высвобождается до 20 различных α-аминокислот. Все другие аминокислоты, открытые в тканях животных, растений и микроорганизмов, их свыше 200, существуют в свободном состоянии или же в составе коротких пептидов или комплексов с другими органическими веществами.
Способы получения аминокислот:
1.Гидролиз из соответствующих белков.
2.Методом химического синтеза, в том числе с использованием иммобилизованных ферментов.
3.Методом микробиологического синтеза. Таким способом производят аминокислоты для нужд животноводства, – это многотоннажный промышленный способ.
α-аминокислоты представляют собой производные карбоновых кислот, у которых один атом водорода, у α-углерода замещен на аминогруппу (-NH2):
жирная кислота α-аминокислота
Все аминокислоты, входящие в состав природных белков, являются α-аминокислотами.
Общим свойством аминокислот является их амфотерность, т.е. каждая из них содержит, как минимум, одну кислую и одну основную группу (исключение составляет пролин и его производное гидроксипролин, являющиеся иминокислотами).
Общий тип строения α-аминокислот может быть представлен в виде следующей формулы:
Аминокислоты отличаются друг от друга химической природой радикала R, представляющего группу атомов в молекуле аминокислоты, связанную с α-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка.
Почти все α-амино- и α-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковой молекулы связано с химической природой и физико-химическими свойствами радикалов аминокислот.
Все аминокислоты – бесцветные кристаллические вещества, на вкус сладковатые или кисло-сладкие.
Большинство аминокислот хорошо растворимо в воде. В тканях организма, в клетках, в крови среда слабощелочная – рН 7,3, поэтому карбоксильные группы находятся в форме R-COO- , а аминные – в форме R-NH3+ (в протонированной форме), поэтому правильная ионная форма аминокислоты:
то есть амфиона (цвитериона) (в пределах рН 4-9).
Аминокислоты в виде недиссоциированных молекул:
т.е. в неионизированной форме приводятся для удобства восприятия. В кислой среде аминогруппа присоединяет протон, получает положительный заряд и под действием электрического тока движется к катоду:
В щелочной среде аминокислота ведет себя как кислота и диссоциирует по такой схеме:
В этом случае при пропускании тока через раствор ионизированная молекула аминокислоты движется к аноду.
Для каждой аминокислоты существует своя изоэлектрическая точка (ИЭТ), т.е. такое состояние, при котором сумма положительных зарядов равна сумме отрицательных зарядов и под действием электрического тока аминокислота не движется ни к аноду, ни к катоду. Для моноаминомонокарбоновых кислот ИЭТ будет близка к реакции нейтральной среды, моноаминодикарбоновых - к кислой и диаминомонокарбоновых – к щелочной.
Для определения количественного содержания аминокислот важное значение имеют следующие методы:
1. Формольное титрование – оно основано на способности формальдегида реагировать с аминогруппой в результате чего аминокислота превращается в основание Шиффа. В этой реакции аминогруппа аминокислоты блокируется остатком формальдегида, а карбоксильная группа не затрагивается и может быть оттитрована щелочью:
2. Реакция с азотистой кислотой – при действии азотистой кислоты аминогруппа разрушается, при этом выделяющийся азот собирают и по его количеству рассчитывают содержание аминокислоты (метод Ван-Слайка) - газометрический метод:
диазосоединение оксикислота
3. Нингидриновый метод определения широко применяется:
а) при хроматографическом разделении аминокислот на бумаге;
б) в автоматических анализаторах аминокислот;
в) для определения аминного азота.
4. Существуют реакции для обнаружения и полуколичественного определения аминокислот:
• реакция Миллона (тирозин);
• ксантопротеиновая реакция (фенилаланин, тирозин)
• реакция Сакагучи (аргинин).
Аминокислоты природных белков (кроме глицина) обладают оптической активностью, т.е. способностью вращать плоскость поляризованного света. Различают D- и L-формы аминокислот, например:
D (-) - Аланин L (+) - Аланин
Все природные белковые аминокислоты относятся к L-ряду. Лишь в белках некоторых микроорганизмов встречаются некоторые D-аминокислоты (также в грибах, антибиотиках).
Аминокислоты D-ряда или совершенно не усваиваются организмом или же усваиваются плохо, т.к. ферментные системы животного организма специфически приспособлены к обмену L-аминокислот. Это важно при учете балансирования рациона животных по незаменимым аминокислотам синтетическими аналогами, которые, как правило, содержат в равных количествах L- и D- формы (рацематы).
Аминокислоты обозначают трехбуквенными символами, например: Алании Ала, Гистидин Гис, Аргинин Apr, и т.д. Кроме того, принято однобуквенное обозначение аминокислот; например, глицин - G, аланин - А, валин - V, лейцин - L и т.д.
Важным свойством аминокислот является их способность синтезироваться в тканях организма животных. Различают аминокислоты заменимые, которые могут синтезироваться в тканях животного организма и незаменимые, которые не могут синтезироваться в организме, а должны поступать с кормом.
- Биохимия животных Электронный дидактический комплекс (эдк)
- Физическая химия вода
- Активная реакция водных растворов
- Ионное произведение воды. Водородный показатель
- Методы определения рН среды
- Роль активной реакции среды в биологических процессах
- Буферные pacтворы, состав, механизм действия
- Буферная емкость
- Биологическое значение буферных систем
- Коллоидная химия
- Классификация дисперсных систем
- Поверхностные явления
- Адсорбция
- Коллоидные растворы (золи) Методы получения
- Строение коллоидных частиц
- Коагуляция. Седиментация. Пептизация
- Молекулярно-кинетические свойства коллоидных растворов
- Осмотическое давление
- Биологическое значение явления осмоса
- Механизмы, участвующие в сохранении изоосмии:
- Оптические свойства коллоидных систем
- Растворы высокомолекулярных соединений
- Свободная и связанная вода в коллоидных pacтвopax
- Свойства растворов вмс
- Денатурация
- 2. Белки; биологическая роль Аминокислоты
- Содержание белков в организме и тканях
- Методы выделения белков
- Методы фракционирования и очистки белков
- Физико-химические свойства белков
- Аминокислоты
- Ациклические аминокислоты
- Структура белковой молекулы
- Классификация белков
- Химия сложных белков
- 3. Нуклеиновые кислоты
- Нуклеотиды и нуклеозиды
- Структура днк
- Рибонуклеиновые кислоты
- 4. Ферменты
- Биосинтез и клеточная локализация ферментов
- Химическая природа ферментов
- Строение ферментов
- Активный центр фермента
- Регуляция активности ферментов
- Механизм действия ферментов
- Основные свойства ферментов
- 2. Зависимость активности ферментов от рН среды.
- Факторы, определяющие активность ферментов
- Активирование и ингибирование ферментов
- Типы ингибирования
- Классификация и номенклатура ферментов
- Применение ферментов.
- Использование иммобилизованных ферментов для производства биологических соединений
- Иммуноферментный анализ и его использование в ветеринарии
- 5. Химия витаминов
- Классификация и номенклатура витаминов
- I. Жирорастворимые витамины
- II. Витамины, растворимые в воде
- Витамин d, антирахитический, кальциферол
- Витамин e, антистерильный, токоферолы
- Витамин к, антигеморрагический (филлохинон)
- Витамин q (убихинон)
- Водорастворимые витамины
- Витамин b1, антиневритный, тиамин
- Витамин b2, рибофлавин
- Витамин b3, пантотеновая кислота
- Витамин b5, pp, никотинамид, ниацин, антипеллагрический
- Витамин b6, адермин, пиридоксол
- Витамин b12, кобаламин, антианемический
- Фолиевая кислота
- Витамин с (аскорбиновая кислота)
- Биотин, витамин h
- 6. Гормоны
- Гормоны гипофиза
- Поджелудочная железа
- Гормоны щитовидной железы
- Гормоны надпочечников
- Гормоны коры надпочечников
- Гормоны половых желез
- Гормоны тимуса (вилочковой железы)
- Гормоны местного действия
- 7. Обмен веществ и энергии
- Основные этапы обмена веществ
- Биологическое окисление
- Окислительное фосфорилирование
- Токсичность кислорода
- 8. Химия и обмен углеводов
- Моносахариды
- Производные моносахаридов.
- Полисахариды (гликаны)
- Гетерополисахариды (гетерогликаны)
- Обмен углеводов
- Катаболизм глюкозы
- Гликогенолиз
- Биосинтез углеводов
- Биосинтез гликогена (гликогенез)
- Регуляция углеводного обмена.
- 9. Химия и обмен липидов
- Химическое строение нейтральных жиров
- Жирные кислоты.
- Нейтральные гликолипиды
- Фосфолипиды (фосфатиды)
- Сфинголипиды
- Двойной липидный слой мембран
- Обмен липидов
- Переваривание липидов в желудочно-кишечном тракте
- Промежуточный обмен липидов
- Энергетический баланс β-окисления жирных кислот
- Метаболизм ацетил-коэнзима а
- Пути образования кетоновых тел
- Биосинтез липидов
- Метаболизм стеринов и стеридов
- Липосомы
- 10. Обмен белков
- Биологическая ценность белков
- Нормы белка в питании животных
- Белковые резервы организма
- Обмен простых белков
- Переваривание белков в желудочно-кишечном тракте моногастричных животных
- Переваривание белков в кишечнике.
- Особенности переваривания белков у жвачных животных
- Дезаминирование аминокислот
- Трансаминирование – непрямой путь дезаминирования аминокислот
- Декарбоксилирование аминокислот
- Окислительное расщепление аминокислот
- Особенности обмена отдельных аминокислот
- 11. Биосинтез белка
- Генетический код
- Этапы синтеза белка
- Мультиферментный механизм синтеза белка
- 12.Обмен нуклеиновых кислот Переваривание нуклеиновых кислот в желудочно-кишечном тракте
- Промежуточный обмен нуклеиновых кислот Распад нуклеиновых кислот в тканях
- Пиримидиновые основания
- Биосинтез нуклеиновых кислот
- Рекомбинантные молекулы и проблемы генной инженерии
- Клонирование животных
- Метод молекулярной гибридизации
- Принцип метода
- Способы гибридизации
- Метод блоттинга по Саузерну
- Полимеразная цепная реакция (пцр)
- Необходимые приборы и реактивы
- 13. Обмен воды и солей
- Вода, ее содержание и роль в организме
- Потребность животного организма в минеральных веществах, их поступление и выделение
- Микроэлементы
- 14. Биохимия крови
- Физико-химические свойства крови
- Буферные системы крови
- Плазма крови и ее химический состав
- Белки плазмы и сыворотки крови
- Небелковые азотистые вещества крови
- Форменные элементы крови
- 15. Биохимия мышечной ткани
- Механизм сокращения мышцы
- Азотистые экстрактивные вещества мышц
- Минеральные вещества
- Окоченение мышц
- 16. Биохимия молока и молокообразования
- 17. Биохимия почек и мочи
- Патологические компоненты мочи
- Особенности мочи птиц
- 18. Биохимия кожи и шерсти
- 19. Биохимия яйца
- Биосинтез компонентов яйца
- Предметный указатель
- Приложения
- Рекомендуемая литература
- Тесты для проверки биохимических
- Глава 8. Химия обмена углеводов
- 24. Сложноэфирные связи в молекулах триацилглицеролов подвергаются ферментативному гидролизу при участии:
- Глава 11. Синтез белка
- Глава 12. Обмен нуклеиновых кислот
- Глава 13. Биохимия почек и мочи