Использование иммобилизованных ферментов для производства биологических соединений
Иммобилизованные ферменты широко применяются для производства различных продуктов и лекарственных препаратов. Иммобилизованный фермент впервые в промышленном масштабе был использован для разделения рацемических смесей D- и L-аминокислот (Япония, 1969 г.). Сейчас реализовано получение L-аспарагиновой кислоты, L-тирозина, L-триптофана и других аминокислот путем присоединения к аминокислотам остатка уксусной кислоты (ацил) и воздействия аминоацилазой, которая гидролизует только ацил L-аминокислот.
В промышленном масштабе получают инвертный сахар (смесь глюкозы и фруктозы, возникающая в результате гидролиза сахарозы) с помощью иммобилизованной β-фруктофуранозидазы (сахаразы). Этот фермент очень устойчив и за десять лет непрерывной работы одного из реакторов его активность снизилась всего на 10%.
С помощью иммобилизованного фермента глюкозоизомеразы в больших объемах получают из кукурузного крахмала смесь глюкозы и фруктозы. Этот фермент глюкозу превращает во фруктозу. Такие установки функционируют в США (с 1972 г.), ФРГ, Дании, Голландии. В нашей стране изомеризацию глюкозы в фруктозу ведут в реакторе с помощью глюкозоизомеразы из Actinomyces olivocinereus, иммобилизованной на силохроме. Глюкозо-фруктозная смесь является очень важным продуктом для больных сахарным диабетом.
Иммобилизованные ферменты широко применяются для синтеза аминокислот. Так, в 1974 г. в Японии начат промышленный синтез L-аспарагиновой кислоты с участием фермента аспартат-аммиаклиазы, иммобилизованный на фенол-формальдегидной смоле. Фермент осуществляет образование L-аспарагиновой кислоты из аммония и фумаровой кислоты. L-триптофан синтезируют из индола и серина при помощи фермента триптофан-синтетазы, L-тирозина с участием иммобилизованной тирозин-фенол-лиазы.
Иммобилизованные ферменты применяются для производства антибиотиков и гормональных препаратов.
Для производства некоторых продуктов удобнее пользоваться не иммобилизованными ферментами, а иммобилизованными микробными клетками – продуцентами ферментов. Так, этанол получают из глюкозы с помощью иммобилизованных в полиакриламидном геле клеток Saccharomyces cerevisiae. Первый в мире промышленный реактор проточного типа объемом в одну тонну по синтезу L-аспарагиновой кислоты из фумарата аммония был запущен в Японии (1973 г.). В нем использованы иммобилизованные в полиакриламидном геле клетки кишечной палочки (Esherichia coli), содержащие аспартат-аммиак-лиазу:
фумарат аспарагиновая
аммония кислота
Реактор давал около 2000 кг L-аспарагиновой кислоты в сутки при 95%-ном уровне превращения в нее введенного фумарата аммония. При подкислении элюата до рН 2,8 и охлаждении до 15оC аспарагиновая кислота выделялась в виде кристаллов. Иммобилизованные клетки E.coli сохраняли активность фермента в течение четырех месяцев, в то время как интактные клетки только в течение 10 дней.
L-изолейцин синтезируют из треонина и глюкозы при посредстве иммобилизованных клеток Serratia marcescens с выходом до 4 г/л элюата с колонки реактора. Таким же образом получают незаменимую аминокислоту L- лизин:
При помощи иммобилизованных клеток Corynobacterium glutamicum производят L-глутаминовую кислоту из глюкозы; E coli – L-триптофан из индола, Streptococus faecalis – L-орнитин из L-аргинина. С помощью иммобилизованных микроорганизмов синтезируют L-формы аминокислот – аланина, фенилаланина, метионина, треонина. Таким образом, производство L-аминокислот для питания человека и выращивания сельскохозяйственных животных и птиц осуществляется в основном в реакторах с иммобилизованными клетками.
Отработаны способы получения яблочной кислоты из фумаровой, пропионовой, уксусной и пировиноградной кислот из глюкозы, лактозы или лактата натрия в проточной системе с клетками пропионовокислых бактерий, иммобилизованными в полиакриламидный гель.
Иммобилизованные ферменты широко применяют для производства различных гормональных препаратов.
Производится в больших масштабах аспартам – метиловый эфир аспартил-фенилаланина:
Аспартам
Аспартам в 300 раз слаще сахара, безвреден, в организме расщепляется на аспарагиновую кислоту и фенилаланин, используется для детского питания, добавляется в диетическую кока-колу. Ферменты, синтезирующие аспарагиновую кислоту и фенилаланин, получены генно-инженерным методом.
- Биохимия животных Электронный дидактический комплекс (эдк)
- Физическая химия вода
- Активная реакция водных растворов
- Ионное произведение воды. Водородный показатель
- Методы определения рН среды
- Роль активной реакции среды в биологических процессах
- Буферные pacтворы, состав, механизм действия
- Буферная емкость
- Биологическое значение буферных систем
- Коллоидная химия
- Классификация дисперсных систем
- Поверхностные явления
- Адсорбция
- Коллоидные растворы (золи) Методы получения
- Строение коллоидных частиц
- Коагуляция. Седиментация. Пептизация
- Молекулярно-кинетические свойства коллоидных растворов
- Осмотическое давление
- Биологическое значение явления осмоса
- Механизмы, участвующие в сохранении изоосмии:
- Оптические свойства коллоидных систем
- Растворы высокомолекулярных соединений
- Свободная и связанная вода в коллоидных pacтвopax
- Свойства растворов вмс
- Денатурация
- 2. Белки; биологическая роль Аминокислоты
- Содержание белков в организме и тканях
- Методы выделения белков
- Методы фракционирования и очистки белков
- Физико-химические свойства белков
- Аминокислоты
- Ациклические аминокислоты
- Структура белковой молекулы
- Классификация белков
- Химия сложных белков
- 3. Нуклеиновые кислоты
- Нуклеотиды и нуклеозиды
- Структура днк
- Рибонуклеиновые кислоты
- 4. Ферменты
- Биосинтез и клеточная локализация ферментов
- Химическая природа ферментов
- Строение ферментов
- Активный центр фермента
- Регуляция активности ферментов
- Механизм действия ферментов
- Основные свойства ферментов
- 2. Зависимость активности ферментов от рН среды.
- Факторы, определяющие активность ферментов
- Активирование и ингибирование ферментов
- Типы ингибирования
- Классификация и номенклатура ферментов
- Применение ферментов.
- Использование иммобилизованных ферментов для производства биологических соединений
- Иммуноферментный анализ и его использование в ветеринарии
- 5. Химия витаминов
- Классификация и номенклатура витаминов
- I. Жирорастворимые витамины
- II. Витамины, растворимые в воде
- Витамин d, антирахитический, кальциферол
- Витамин e, антистерильный, токоферолы
- Витамин к, антигеморрагический (филлохинон)
- Витамин q (убихинон)
- Водорастворимые витамины
- Витамин b1, антиневритный, тиамин
- Витамин b2, рибофлавин
- Витамин b3, пантотеновая кислота
- Витамин b5, pp, никотинамид, ниацин, антипеллагрический
- Витамин b6, адермин, пиридоксол
- Витамин b12, кобаламин, антианемический
- Фолиевая кислота
- Витамин с (аскорбиновая кислота)
- Биотин, витамин h
- 6. Гормоны
- Гормоны гипофиза
- Поджелудочная железа
- Гормоны щитовидной железы
- Гормоны надпочечников
- Гормоны коры надпочечников
- Гормоны половых желез
- Гормоны тимуса (вилочковой железы)
- Гормоны местного действия
- 7. Обмен веществ и энергии
- Основные этапы обмена веществ
- Биологическое окисление
- Окислительное фосфорилирование
- Токсичность кислорода
- 8. Химия и обмен углеводов
- Моносахариды
- Производные моносахаридов.
- Полисахариды (гликаны)
- Гетерополисахариды (гетерогликаны)
- Обмен углеводов
- Катаболизм глюкозы
- Гликогенолиз
- Биосинтез углеводов
- Биосинтез гликогена (гликогенез)
- Регуляция углеводного обмена.
- 9. Химия и обмен липидов
- Химическое строение нейтральных жиров
- Жирные кислоты.
- Нейтральные гликолипиды
- Фосфолипиды (фосфатиды)
- Сфинголипиды
- Двойной липидный слой мембран
- Обмен липидов
- Переваривание липидов в желудочно-кишечном тракте
- Промежуточный обмен липидов
- Энергетический баланс β-окисления жирных кислот
- Метаболизм ацетил-коэнзима а
- Пути образования кетоновых тел
- Биосинтез липидов
- Метаболизм стеринов и стеридов
- Липосомы
- 10. Обмен белков
- Биологическая ценность белков
- Нормы белка в питании животных
- Белковые резервы организма
- Обмен простых белков
- Переваривание белков в желудочно-кишечном тракте моногастричных животных
- Переваривание белков в кишечнике.
- Особенности переваривания белков у жвачных животных
- Дезаминирование аминокислот
- Трансаминирование – непрямой путь дезаминирования аминокислот
- Декарбоксилирование аминокислот
- Окислительное расщепление аминокислот
- Особенности обмена отдельных аминокислот
- 11. Биосинтез белка
- Генетический код
- Этапы синтеза белка
- Мультиферментный механизм синтеза белка
- 12.Обмен нуклеиновых кислот Переваривание нуклеиновых кислот в желудочно-кишечном тракте
- Промежуточный обмен нуклеиновых кислот Распад нуклеиновых кислот в тканях
- Пиримидиновые основания
- Биосинтез нуклеиновых кислот
- Рекомбинантные молекулы и проблемы генной инженерии
- Клонирование животных
- Метод молекулярной гибридизации
- Принцип метода
- Способы гибридизации
- Метод блоттинга по Саузерну
- Полимеразная цепная реакция (пцр)
- Необходимые приборы и реактивы
- 13. Обмен воды и солей
- Вода, ее содержание и роль в организме
- Потребность животного организма в минеральных веществах, их поступление и выделение
- Микроэлементы
- 14. Биохимия крови
- Физико-химические свойства крови
- Буферные системы крови
- Плазма крови и ее химический состав
- Белки плазмы и сыворотки крови
- Небелковые азотистые вещества крови
- Форменные элементы крови
- 15. Биохимия мышечной ткани
- Механизм сокращения мышцы
- Азотистые экстрактивные вещества мышц
- Минеральные вещества
- Окоченение мышц
- 16. Биохимия молока и молокообразования
- 17. Биохимия почек и мочи
- Патологические компоненты мочи
- Особенности мочи птиц
- 18. Биохимия кожи и шерсти
- 19. Биохимия яйца
- Биосинтез компонентов яйца
- Предметный указатель
- Приложения
- Рекомендуемая литература
- Тесты для проверки биохимических
- Глава 8. Химия обмена углеводов
- 24. Сложноэфирные связи в молекулах триацилглицеролов подвергаются ферментативному гидролизу при участии:
- Глава 11. Синтез белка
- Глава 12. Обмен нуклеиновых кислот
- Глава 13. Биохимия почек и мочи