logo
синтезы орган

Нуклеофильное замещение у sp3-гибридизованного атома углерода

В качестве уходящих групп в процессах, проходящих по схеме (1), чаще всего выступают галогены, фрагменты кислот (-OSO3H, ‑ONO2), гидроксильная группа. Галогены по легкости замещения можно расположить в ряд: I > Br > Cl > > F.

В общем случае уходящая группа X замещается тем труднее, чем слабее выражены кислотные свойства HX. В случае спиртов (X = OH) гидроксид-анион – плохая уходящая группа, так как его сопряженной кислотой является вода H-OH – очень слабая кислота. Для осуществления нуклеофильного замещения спиртовой ОН-группы реакцию проводят в среде сильной кислоты (чаще всего – серной). В этих условиях гидроксильная группа спирта протонируется и превращается в хорошую уходящую группу Н2О+ – (H3O+ – сильная кислота):

ROH + H2SO4 ROH2+ + HSO4- (3)

Спирты с серной кислотой образуют также сложные эфиры (алкилсер­ные кислоты):

(4)

алкилсерные кислоты

Можно видеть, что как в стадии (3), так и в стадии (4) образуются соединения с хорошими уходящими группами. Они и участвуют в дальнейших реакциях нуклеофильного замещения:

ROH2+ + Br- RBr + H2O

ROSO3H + Br- RBr + HSO4-

Механизмы реакций нуклеофильного замещения разнообразны. При замещении у sp3-гибридизованного атома углерода наиболее характерны мономолекулярный SN1:

и бимолекулярный SN2 механизмы:

Цифры 1 и 2 в этих символах обозначают число частиц, взаимодействие которых приводит к переходному состоянию (состояние с максимальной величиной потенциальной энергии системы). Если процесс состоит из нескольких последовательных элементарных стадий, то молекулярность определяется самой медленной реакцией.

Можно видеть, что процесс SN1 включает две элементарные реакции, причем медленная стадия представляет собой мономолекулярный разрыв связи С-Х. Переходное состояние SN2-типа достигается при столкновении двух частиц (Y- и R3CX) , следовательно, этот процесс бимолекулярный.

Скорости реакций, проходящих по SN1-механизму, зависят только от концентрации соединения RX:

v = k.cRX

(v – скорость реакции, k – константа скорости, cRX – концентрация субстрата), в то время как скорости SN2-процессов увеличиваются прямо пропорционально концентрациям и субстрата, и нуклеофильного реагента (сY):

v = k.cRX.сY

Молекулярность процессов нуклеофильного замещения (SN1 или SN2) зависит от многих факторов: природы субстрата, растворителя, активности нуклеофила.

Субстраты, способные образовывать относительно устойчивые карбокатионы в полярных растворителях (вода, серная кислота, муравьиная кислота и т. п.), реагируют по SN1-механизму. К ним относятся соединения, в которых уходящие группы находятся у третичных углеродных атомов или у атомов в аллильном или бензильном положениях. Ниже представлено несколько примеров таких соединений:

СН2=СН-СН2-Cl

трет-бутилхлорид,

хлористый аллил,

хлористый бензил.

В первичных галогеналканах (например, в CH3CH2CH2Cl) замещение преимущественно проходит по механизму SN2.

Вторичные алкилгалогениды типа бромистого изопропила CH3CH(Br)CH3 реагируют одновременно по обоим механизмам, часть молекул – по SN1-, а часть – по SN2- механизму.

Ускорение нуклеофильного замещения OH-группы в спиртах в присутствии сильных кислот обусловлено кислотным катализом. Реакции нуклеофильного замещения, катализируемые кислотами, также могут протекать по мономолекулярному и бимолекулярному механизмам. Мономолекулярный описывается схемой:

Последовательность элементарных реакций бимолекулярного замещения спиртовой гидроксильной группы имеет вид:

Реакции нуклеофильного замещения спиртов обратимы. Для того чтобы сместить равновесие в сторону алкилгалогенида в качестве реагента применяют газообразные галогеноводороды, либо реакцию проводят в среде серной кислоты, связывающей воду, например:

С2H5OH + HCl(газ) С2H5Cl + H­2O