Фракционная перегонка и перегонка с дефлегматором
Возможности разделения веществ с помощью простой перегонки весьма ограничены. Фактически она позволяет отделить летучие соединения от нелетучих, например, диэтиловый эфир (Ткип = 36 С) отогнать от анилина (Ткип = 184 C). Если температуры кипения неограниченно смешивающихся жидкостей различаются менее, чем на 50 С, дистиллат – продукт перегонки – обязательно содержит компонент с высокой температурой кипения (даже если это первые капли дистиллата), а остаток в перегонной колбе (кубовый остаток) – компонент с низкой температурой кипения. Правда его содержание будет значительно меньше, чем в исходной смеси. Поэтому если перегонку повторить несколько раз, можно получить достаточно чистые вещества.
Практически при дробной перегонке поступают следующим образом. Смесь перегоняют, собирая три фракции, обычно в заранее выбранных температурных интервалах. Например, если перегоняется смесь метилового спирта (Ткип = 64 С) и воды, температурный интервал, в котором может кипеть такая смесь, равен 100 – 64 = 36 С. Этот интервал делят на три части. Первую фракцию собирают в пределах 64 – 76 С, вторую – 76 – 88 С и третью – 88 – 100 С. Первая фракция содержит преимущественно (но не исключительно) метиловый спирт, а последняя – преимущественно воду. Чем больше разнятся температуры кипения компонентов, тем больше объемы первой и последней фракций и тем меньше объем промежуточной.
Далее вновь перегоняют первую фракцию. После того, как температура повторной перегонки поднимется до 76 С, к кубовому остатку прибавляют вторую фракцию первой перегонки. Может это покажется странным, хотя удивительного здесь ничего нет, но полученная смесь закипает при температуре ниже 76 С. Поэтому приемник дистиллата меняют только тогда, когда температура вновь не достигнет 76 С. Затем собирают фракцию с температурой кипения до 88 С и к кубовому остатку прибавляют третью фракцию, полученную при первой перегонке. Вновь жидкость закипает при температуре несколько ниже 88 С, поэтому приемник пока остается прежним. Третью фракцию собирают, как и первый раз в интервале температур 88 – 100 С. Если промежуточная фракция в результате повторной перегонки остается большой по объему, ректификацию повторяют еще и еще раз. В конечном счете путем больших затрат времени и труда с помощью фракционной перегонки можно получить практически чистые вещества, даже если они очень близки по температурам кипения. К счастью, существует более приемлемый вариант разделения смесей компонентов с близкими температурами кипения – ректификация.
Самым простым вариантом ректификации является перегонка с дефлегматором (рис. 8).
Рис. 8. Схема установки для перегонки с дефлегматором: 1 – термометр, 2 – дефлегматор, 3 – перегонная колба, 4 – водяная баня , 5 – прямой холодильник, 6 – алонж, 7 – приемная колба
Дефлегматор (2) – это стеклянная трубка, внутренняя поверхность которой сплошь покрыта выступами для увеличения площади контакта паров жидкости, поднимающихся из колбы (3), с конденсатом, стекающим обратно. (Конденсат в данном случае называется флегмой, откуда и название “дефлегматор”). В дефлегматоре горячие пары (предпочтительно компонент с высокой температурой кипения) конденсируются в более холодной жидкости. При этом выделяется теплота, которая расходуется на повторное испарение конденсата, причем предпочтительно его компонента с меньшей температурой кипения. Этот процесс конденсации – испарения многократно повторяется, и из дефлегматора в холодильник (5) поступает пар, обогащенный легко летучим компонентом.
Следует отметить, что эффективность работы дефлегматора тем выше, чем он длиннее, лучше термоизолирован и чем медленнее осуществляется перегонка. Установлено, что перегонка с дефлегматором длиной 1 м соответствует обычной двукратной перегонке. Практически используемые дефлегматоры в два – три раза короче, поэтому для более менее удовлетворительного разделения компонентов жидкости перегонку приходится повторять.
Очень простой по конструкции и эффективной в работе является лабораторная ректификационная колонка, представляющая собой стеклянную трубку диаметром 35 – 40 мм длиной 70 – 80 см, заполненную стеклянными колечками диаметром 4 – 5 мм или обрезками трубочек диаметром 2 – 2,5 мм длиной 6 – 7 мм. Такую колонку, как и дефлегматор, следует хорошо термоизолировать. Примерно половину выходящих из нее паров следует сконденсировать в обратном холодильнике и вернуть назад в колонку в виде флегмы. Вторая половина направляется в прямой холодильник и далее через алонж в приемную колбу. Перегонка с такой колонкой в 5 –10 раз более эффективна, чем обычная.
Существуют смеси, которые при определенном составе дают пар, не отличающийся по составу от жидкости. Они называются азеотропными (постояннокипящими) и разделить их никакой перегонкой невозможно. Примером азеотропа может служить смесь 95,57 % этилового спирта и 4,43 % воды. Эта смесь, подобно чистому веществу, вся выкипает при постоянной температуре (78,15 С).
Дополнительные сведения по технике лабораторных работ см. в [5, 6].
- О. А. Голубчиков
- Органический практикум
- Санкт-Петербург
- Нии химии сПбГу – 2012
- Оглавление
- Предисловие
- 1. Общие правила и методы работы
- 1.1. Планирование работ и ведение рабочего журнала
- 1.1.1. Форма ведения записей в лабораторном журнале
- 1.1.2. Пояснения к составлению таблиц
- 1.1.3. План экспериментальной работы. Отчет о выполнении работы
- 1.2. Правила техники безопасности в лаборатории органического синтеза
- 1.2.1. Общие правила работы
- 1.2.2. Правила обращения с ядовитыми и едкими веществами
- 1.2.3. Правила при работе с огнеопасными веществами
- 1.2.4. Правила при работах, которые могут сопровождаться взрывами или выбросами веществ
- 1.2.5. Правила обращения со стеклом
- 1.3. Основные методы выделения и очистки органических соединений
- 1.3.1 Перекристаллизация Принцип метода
- Подбор растворителя
- Практика проведения перекристаллизации
- Обесцвечивание горячих насыщенных растворов
- Фильтрование с отсасыванием
- Сушка органических веществ
- Определение температуры плавления вещества
- Контрольные вопросы
- 1.3.2. Перегонка органических жидкостей
- 1.3.2. Простая перегонка при атмосферном давлении
- Перегонка при уменьшенном давлении (под вакуумом)
- Перегонка с водяным паром
- Фракционная перегонка и перегонка с дефлегматором
- Контрольные вопросы
- 1.3.3. Хроматография
- Газо-жидкостная хроматография
- Тонкослойная и бумажная хроматография
- Нуклеофильное замещение у sp3-гибридизованного атома углерода
- Нуклеофильное замещение у sp2-гибридизованного карбонильного углерода
- Контрольные вопросы
- 2.1.2. Бромистый изопропил
- Примечания:
- Пояснения к синтезу
- Контрольные вопросы
- 2.1.3. Ацетанилид (метод а)
- 2.1.4. Ацетанилид (метод б)
- Пояснения к синтезу
- Контрольные вопросы
- 2.1.5. Ацетилсалициловая кислота (аспирин)
- Пояснения к синтезу
- Контрольные вопросы
- Пояснения к синтезу
- 2.2. Электрофильное замещение в ароматическом ряду
- 2.2.1. Основные теоретические положения
- 2.2.2. Нитротолуолы (смесь изомеров)
- Хроматографическое определение изомерного состава нитротолуолов
- Пояснения к синтезу
- Контрольные вопросы
- Пояснения к синтезу
- Контрольные вопросы
- 2.2.4. Cульфаниловая кислота
- Пояснения к синтезу
- Контрольные вопросы
- 2.3. Восстановление нитросоединений
- 2.3.1. Основные теоретические положения
- Восстановление металлами в присутствии растворов электролитов
- Восстановление в кислой среде металлами
- Пути восстановления нитросоединений в зависимости от pH среды Восстановление в кислой среде
- Восстановление в щелочной среде
- Восстановление в щелочной среде растворами сульфидов. Селективное восстановление полинитросоединений
- Определение конца реакции
- Выделение продуктов реакции
- Меры предосторожности при работе с ароматическими аминами
- 2.3.2. Анилин
- Выделение анилина из реакционной смеси
- 2.3.3. Выделение и идентификация аминов
- Пояснения к синтезу
- Экстракция органических веществ из водных растворов
- Контрольные вопросы
- 2.3.4. Мета-Нитроанилин
- Пояснения к синтезу
- Контрольные вопросы
- 2.4. Получение и превращения диазосоединений
- 2.4.1. Основные теоретические положения
- Получение ароматических диазосоединений
- Механизм диазотирования
- Факторы, влияющие на скорость диазотирования
- Контроль диазотирования
- Формы диазосоединений
- Превращения диазосоединений Азосочетание
- Реакции солей диазония с выделением азота
- 2.4.2. Йодбензол
- Пояснения к синтезу
- Пояснения к синтезу
- Пояснения к синтезу
- Контрольные вопросы
- 2.4.5. Метилоранж
- Примечания к синтезу
- Метиловый оранжевый:
- 2.4.6. Кислотный оранжевый (-нафтолоранж)
- Азосочетание
- 2.4.7. Резорциновый желтый (тропеолин)
- Азосочетание
- 2.4.8. Спектрофотометрическое определение содержания красителя в растворе
- 2.4.9. Пояснения к синтезам азокрасителей
- Контрольные вопросы
- 2.5. Окисление
- 2.5.1. Основные теоретические положения
- 2.5.2. Бензойная кислота (из толуола)
- Примечание
- 2.5.3. Бензойная кислота (из бензилового спирта)
- Пояснения к синтезам бензойной кислоты (2.5.2 и 2.5.3)
- Контрольные вопросы
- 2.5.4. Масляный альдегид (бутаналь)
- Пояснения к синтезу
- Контрольные вопросы
- 2.5.5. Бензальдегид
- Пояснения к синтезу
- Контрольные вопросы
- 3. Синтез гетероциклических соединений
- Пояснения к синтезу
- Пояснения к синтезу
- Пояснения к синтезу
- Пояснения к синтезу
- Бензимидазол
- Пояснения к синтезу
- Пояснения к синтезу
- Хинолин (синтез Скраупа)
- Пояснения к синтезу
- Фенилизоиндолизин
- Пояснения к синтезу
- Фенотиазин
- Пояснения к синтезу
- 5,10,15,20-Тетрафенилпорфирины
- 5,10,15,20-Тетрафенилпорфирин
- Пояснения к синтезу
- Хроматографическая очистка тетрафенилпорфирина
- 5,10,15, 20-Тетракис(4-нитрофенил)порфирин
- Пояснения к синтезу
- 5,10,15,20-Тетракис(4-бромфенил)порфирин
- Приложение
- Список рекомендуемой литературы