logo search
синтезы орган

Нуклеофильное замещение у sp2-гибридизованного карбонильного углерода

Этот вид замещения имеет место при взаимодействиях:

а) карбоновых кислот со спиртами (реакции этерификации),

б) практически всех функциональных производных карбоновых кислот – сложных эфиров, ангидридов, галогенангидридов, амидов и т.п. – с водой (реакции гидролиза производных карбоновых кислот),

в) галогенангидридов и ангидридов карбоновых кислот с аммиаком, фенолами, и т. п. (реакции ацилирования соответствующих классов соединений).

Все эти взаимодействия в общем виде описываются схемой (2). Например, уравнение ацилирования анилина с помощью уксусного ангидрида (см. основную реакцию синтеза ацетанилида по методу А, стр. 63) получается из схемы (2) при R = CH3, X = OCOCH3, Y = C6H5NH2.

Реакционная способность перечисленных соединений чрезвычайно сильно зависит от природы заместителя Х: чем выше электронодонорные свойства Х, тем ниже положительный заряд на карбонильном атоме углерода и тем медленнее протекает реакция. Например, хлорангидрид уксусной кислоты СН3СО-Cl с водой реагирует едва ли не со взрывом, тогда как диметилацетамид СН3CO-N(CH3)2 медленно гидролизуется лишь при кипячении с водными растворами кислот (серной, соляной и т.п.).

Карбоновые кислоты (RCO-OH), их сложные эфиры (RCO-OR) и амиды кислот (RCO-NH2, RCO-NHR, RCO-NHR2) характеризуются относительно низкой реакционной способностью, так как группы -OH, -OR, -NH2, -NHR и -NR2 сопряжены с соседней двойной связью С=О и проявляют электронодонорные свойства. Поэтому для этих соединений процессы нуклеофильного замещения у sp2-гибридизован­ного атома углерода осуществляют каталитически при содействии сильных кислот.

Роль кислоты и в этом случае заключается в протонировании карбонильного атома кислорода, имеющего следствием рост положительного заряда на соседнем углеродном атоме:

Далее происходит присоединение нуклеофила к карбонильному атому углерода с образованием промежуточного продукта (интермедиата):

интермедиат

Это лимитирующая, самая медленная стадия процесса. Таким образом, реакция замещения в целом классифицируется как бимолекулярная. Атакуемый атом углерода в процессе образования интермедиата изменяет свое валентное состояние от sp2- до sp3-, следовательно углы между -связями, которые образует этот атом, уменьшаются от 120 до ~109 (заместителям вокруг этого атома становится “теснее”). Поэтому на скорость процессов нуклеофильного замещения у sp2-гибридизован­ного атома углерода значительное влияние оказывают величины объемов групп R, X и Y. Чем они больше, тем медленнее при прочих равных условиях лимитирующая стадия образования интермедиата и, следовательно, медленнее проходит весь процесс замещения.

Интермедиат неустойчив и быстро отщепляет либо HX, превращаясь таким образом в продукт замещения, либо HY, что возвращает его в начальное состояние.

Процесс завершается отщеплением Н+ от карбонильной группы:

Реакции нуклеофильного замещения у карбонильного атома, катализируемые сильными кислотами, обратимы. Важно отметить, что прямая и обратная реакции имеют одни и те же промежуточные соединения. Этот частный пример иллюстрирует общий для всех обратимых реакций принцип микроскопической обратимости химических процессов. Ниже приведен пример, конкретизирующий данную схему и показывающий единый механизм обратимого процесса этерификации и гидролиза сложного эфира.

Гидролиз производных карбоновых кислот (сложных эфиров, амидов, ангидридов, галогенангидридов) проходит не только в кислой, но также и в щелочной среде при участии гидроксид-анионов. Естественно, карбоновые кислоты в щелочной среде образуются в виде карбоксилат-ионов RCOO-, которые превращают в недиссоциированную форму RCOOH действием сильных кислот. Примером щелочного гидролиза производных карбоновых кислот может служить реакция расщепления ацетанилида:

ацетанилид или

фениламид уксусной кислоты

ацетат натрия

анилин

Механизм щелочного гидролиза функциональных производных карбоновых кислот показан на следующей схеме:

Две первые реакции равновесны, однако третья в условиях избытка щелочи оказывается практически необратимой. Причиной этого является высокая устойчивость карбоксилатного иона, обусловленная делокализацией отрицательного заряда, в равной мере принадлежащего обоим атомам кислорода.

Более подробные сведения об особенностях протекания и механизмах нуклеофильных реакций замещения представлены в учебниках по органической химии, например, в [9].