Расчет изменения энтропии идеального газа
Рассмотрим переход системы из идеального газа из одного состояния в другое.
Из самых общих соображений в отсутствии химических изменений в системе можно записать (для 1-го моля газа):
;
;
;
pV = RT
и, следовательно,
;
.
Окончательно получаем:
; (при CV f(T)).
Для n молей газа уравнение будет иметь вид:
.
Учтем, что для идеального газа
.
Откуда
;
;
;
;
.
В случае изотермического процесса имеем:
и .
Расчет изменения энтропии реальных газов и конденсированных веществ при p=const
В этом случае следует исходить из уравнения
.
Учтем, как было указано ранее, зависимость Ср от температуры может быть выражена степенными рядами, в частности, в соответствии с уравнениями (22а) и (22б).
Тогда можно записать для первого случая
;
;
.
В случае n молей конденсированного вещества или реального газа будем иметь:
.
В широком интервале температур возможны агрегатные превращения вещества. Тогда до и после агрегатного превращения меняется вид зависимости Ср вещества от температуры, то есть коэффициенты степенных рядов. Собственно фазовый переход происходит при постоянной температуре, иначе говоря:
; (27)
. (28)
В общем виде в отсутствие химического превращения вещества уравнение для расчета имеет вид:
,
i в расчете на 1 моль – мольная теплота фазового перехода
Приведем пример решения задач, связанных с расчетом изменения энтропии, а также несколько задач для самостоятельного решения (все задачи заимствованы в книге: Картушинская А.И, Лельчук Х.А., Стромберг А.Г. Сборник задач по химической термодинамике. М.: Высшая школа. 1973. 224 с.)
Задача 1. Определить изменение энтропии при превращении 2 г воды в пар при изменении температуры от 0 до 150С и давлении в 1,013 105 Н/м2, если скрытая удельная теплота парообразования воды Н = 2,255 кДж/г, а мольная теплоемкость пара при постоянном давлении
Ср = 30,13 + 11,3 103 Т Дж/моль град.
Ср жидкой воды = 75,30 Дж/моль град.
Считать, что в первом приближении, теплоемкость жидкой воды постоянна.
Указанный процесс состоит из трех стадий:
1) нагрева жидкой воды от 0 до 100 С,
2) перехода жидкой воды в пар при 100 С,
3) нагрева водяного пара от 100 до 150 С.
1. Изменение энтропии в стадии 1 рассчитывается по формуле
, (29)
учитывая, что Сp = const,
Дж/град.
2. Изменение энтропии в стадии 2 определяется по формуле (28) с учетом количества вещества воды
Дж/град.
3. Изменение энтропии в стадии 3 рассчитывается по формуле (29)
Дж/град.
Общий прирост энтропии составит
S = S1 + S2 + S3 = 2,61 + 12,09 + 0,49 = 15,19 Дж/град.
Задача 2. В одном из сосудов емкостью 0,1 м3 находится кислород, в другом емкостью 0,4 м3 – азот. В обоих сосудах температура 17 С и давление 1,013 105 Н/м2. найти изменение энтропии при взаимной диффузии газов из одного сосуда в другой при р и Т = const. Считать оба газа идеальными.
Изменение энтропии определяем по формулам:
или
,
так как объем Vпропорционален количеству вещества идеального газаn.
Число молей каждого газа находим из уравнения Менделеева-Клапейрона.
моль,
моль,
Дж/град.
Задача 3. Вычислить изменение энтропии в процессе изотермического расширения 2 моль метана от р1 = 101,3 105 Н/м2 до р2 = 1,013 105 Н/м2. Газ считать идеальным.
По формуле
при Т = const находим
Дж/град.
- В.И. Вигдорович, с.В. Романцова, н.В. Шель, и.В. Зарапина
- Оглавление
- Предисловие
- Часть I. Основы органической химии
- Структура органических соединений
- Теория строения органических соединений а.М. Бутлерова
- Изомерия органических соединений
- Индуктивный и мезомерный эффекты
- Понятие о мезомерном эффекте
- Типы реакций органических соединений. Понятие о механизме реакции
- Типы реакций в органической химии
- Направление и селективность химической реакции
- Предельные (насыщенные) углеводороды
- Изомерия алканов.Для алканов характерен один из видов структурной изомерии – изомерия углеродной цепи (строения углеродного скелета). Приведем примеры таких изомеров:
- Физические свойства алканов
- Физические характеристики некоторых нормальных углеводородов
- Влияние разветвления молекул алканов на их физические характеристики
- Химические свойства алканов
- Некоторые отдельные представители
- Экологическая характеристика алканов
- Задачи по теме
- Циклоалканы
- Физические свойства циклоалканов
- Получение циклоалканов
- Химические свойства малых циклов
- Применение циклоалканов
- Экологическая оценка
- Непредельные углеводороды Алкены (олефины)
- Физические свойства олефинов
- Получение олефиновых углеводородов
- Химические свойства олефинов
- Отдельные представители олефинов
- Экологические характеристики
- Задачи по теме
- Алкадиены (диеновые углеводороды)
- Методы получение диенов
- Химические свойства диенов
- Каучуки
- Экологическая характеристика
- Задачи по теме
- Алкины (ацетиленовые углеводороды)
- Методы получения алкинов
- Физические свойства алкинов
- Химические свойства алкинов
- Экологическая характеристика
- Задачи по теме
- Предельные спирты
- Предельные одноатомные спирты
- Получение одноатомных спиртов
- Физические свойства первичных спиртов
- Химические свойства одноатомных спиртов
- Отдельные представители
- Предельные многоатомные спирты
- Получение двухатомных спиртов
- Получение трехатомных спиртов
- Физические свойства многоатомных спиртов
- Химические свойства многоатомных спиртов
- Экологическая характеристика
- Задачи по теме
- Предельные оксосоединения
- Альдегиды
- Получение альдегидов
- Физические свойства альдегидов
- Химические свойства альдегидов
- Отдельные представители
- Экологическая характеристика
- Получение кетонов
- Химические свойства кетонов
- Отдельные представители
- Задачи по теме
- Карбоновые кислоты
- Электронное строение карбоксильной группы
- Предельные карбоновые кислоты
- Физические свойства кислот
- Получение карбоновых кислот
- Химические свойства карбоновых кислот
- Свойства отдельных представителей гомологического ряда
- Задачи по теме
- Азотсодержащие органические соединения
- Нитросоединения
- Нитрилы и изоцианиды
- Алифатические амины
- Физические свойства аминов
- Получение аминов
- Химические свойства аминов
- Отдельные представители
- Экологическая характеристика
- Задачи по теме
- Аминокислоты
- Физические свойства α-аминокислот
- Способы получения -аминокислот
- Способы получения -аминокислот
- Химические свойства аминокислот
- Отдельные представители
- Простые и сложные эфиры Простые эфиры
- Способы получения простых эфиров
- Физические свойства простых эфиров
- Химические свойства простых эфиров
- Отдельные представители
- Сложные эфиры карбоновых кислот Получение сложных эфиров карбоновых кислот
- Химические свойства эфиров карбоновых кислот
- Физические свойства жиров
- Химические свойства жиров
- Сложные липиды
- Ароматические углеводороды, арены Бензол и его производные
- Методы получения бензола и его гомологов
- Получение гомологов бензола
- Физические свойства аренов
- Химические свойства
- Экологиченские характеристики
- Ароматические оксосоединения Фенолы
- Некоторые физические и термодинамические характеристики ряда фенолов
- Получение фенола
- Некоторые химические свойства фенола
- Задачи по теме
- Гетероциклические соединения
- Пятичленные гетероциклы с одним гетероатомом
- Химические свойства пиридина
- Диоксины
- Физико-химические свойства ксенобиотиков типа диоксинов
- Источники ксенобиотиков
- Пестициды
- Фуллерены. Синтез и свойства соединений на их основе
- Методы получения гидридов фуллеренов
- Кислотность фуллеренов
- Применение фуллеренов
- Высокомолекулярные соединения
- Свойства высокомолекулярных соединений
- Основные химические реакции высокомолекулярных соединений
- Часть II основы химической термодинамики
- Понятия и термины химической термодинамики
- Внутренняя энергия
- Первое началотермодинамики
- Следствия из первого начала термодинамики
- Теплоемкость при постоянном объеме, сv
- Теплоемкость при постоянном давлении
- Равновесные процессы. Максимальная работа
- Термохимия
- Закон Гесса
- Следствия из закона Гесса
- И окончательно
- Связь h и u химических реакций
- Зависимость тепловых эффектов от температуры. Закон Кирхгофа
- Совершенно очевидно, что разности Сi можно выразить через уравнение
- Средняя теплоемкость
- Работа тепловой машины. Теорема и цикл Карно
- Второе начало термодинамики
- Энтропия как критерий самопроизвольного течения процесса
- Следовательно, если такой процесс протекает в изолированной системе, то
- Расчет энтропии
- Расчет изменения энтропии идеального газа
- Задачи для самостоятельного решения
- Принцип локального равновесия
- Важно найти функции, определяющие зависимость deSиdiSот экспериментально измеряемых величин.
- Статистическая интерпретация энтропии
- Химический потенциал и химическое сродство
- Химический потенциал
- Химическое сродство
- Уравнение Клапейрона-Клаузиуса
- Термодинамические потенциалы
- Свободная энергия Гиббса
- Для чистого вещества
- Условия самопроизвольного протекания процесса
- Уравнение Гиббса-Гельмгольца
- Тепловая теорема Нернста. Третий закон термодинамики
- Некоторые аспекты, связанные с достижением химического равновесия
- Изотерма химической реакции
- Изобара химической реакции
- Задачи для самостоятельного решения
- Задача 7.Для реакции
- Задача 8.Для реакции
- Задача 10.Для реакции
- Задача 11. Для реакции
- Литература Основная литература
- Дополнительная литература