8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
В начале данного подраздела рассмотрим пример расчета среднего времени пребывания реагентов в проточном реакторе, как идеального смешения, так и идеального вытеснения.
У словие задачи. Определить среднее временя пребывания реагентов в проточном реакторе, необходимое для достижения степени превращения исходного реагента хA ,f = 0,8. В реакторе протекает реакция второго порядка, описываемая уравнением 2А R + S. Кинетическое уравнение при постоянной температуре процесса имеет вид wr,А = 2,5с2А. Начальная концентрация реагента А на входе в реактор равна сА,0 = 4 кмоль/м3.
Реактор идеального смешения. Для определения воспользуемся уравнением (8.16), при этом концентрацию реагента в реакторе, необходимую для расчета скорости протекающей в нем реакции, выразим через степень превращения:
= = 2 ч.
Реактор идеального вытеснения. В этом случае для решения задачи используем уравнение (8.23), которое после подстановок примет вид:
= = = 0,4 ч.
Таким образом, для достижения одинаковой глубины превращения сырья в проточном РИВ требуется существенно меньшее время по сравнению с проточным РИС.
Этот факт объясняется характером распределения концентрации реагентов по объему указанных реакторов. Если в проточном РИС концентрации во всех точках равны конечной концентрации (рис. 8.9, линия 1), то в проточном РИВ в двух соседних точках на оси реактора концентрации реагентов уже отличаются (линия 2). Например, согласно (8.23) в случае реакции первого порядка формула распределения концентрации реагента А по фронту реактора идеального вытеснения имеет вид:
сА = сА,0 ехр . (8.38)
cJ
cJ,0
2
cJ, f 1
0 L z
Рис. 8.9. Распределение концентрации исходного реагента по фронту реактора идеального смешения (1) и идеального вытеснения (2)
Скорость реакции, согласно закону действующих масс, пропорциональ-на концентрации реагентов. Следовательно, при прочих равных условиях она выше в реакторе идеального вытеснения. А при большей скорости реакции для достижения той же глубины превращения сырья требуется меньшее время пребывания реагента в реакторе.
Основным показателем эффективности работы реактора является интенсивность
I = = , (8.39)
где I – интенсивность;
П – производительность;
V – реакционный объем;
От интенсивности зависит время, затрачиваемое на производство единицы продукции. В реакторах идеального вытеснения интенсивность выше. Объясняется это тем, что в этих реакторах скорость реакции выше, вследствие более высокой концентрации реагентов.
Однако не всегда стремятся к поддержанию более высоких концентраций исходных реагентов. В теме 5 было показано, что при проведении процесса, сопровождающегося параллельными реакциями разного порядка, при-чем порядок целевой реакции меньше порядка побочной реакции (n1<n2), при низких концентрациях исходных реагентов обеспечивается более высокая се-лективность процесса.
Сравним проточные РИВ и РИС при проведении параллельных реакций разного порядка
a1A →rR (I)
a2 A →sS (II)
по выходу целевого продукта R. Примем, что в обоих случаях достигается одинаковая степень превращения исходного реагента А, т. е. в < с.
Выход целевого продукта R для параллельных реакций (I) и (II) равен:
R = . (8.40)
Графическое сравнение выхода целевого продукта R в реакторах идеального вытеснения и идеального смешения при проведении параллельных реакций разного порядка изображено на рис. 8.10 ( / – селективность).
a б в
1 1 1
2
1 1; 2
2 1
0 сА,f сА,0 сА сА,р сА,0 сА сА,р сА,0 сА
Рис. 8.10. Графическое сравнение выхода целевого продукта в РИВ (1) и РИС (2) при проведении параллельных реакций разного порядка
Если порядок целевой реакции превышает порядок побочной параллельной реакции (n1>n2), выход целевого продукта выше в РИВ (рис. 8.10, а).
Если порядок целевой реакции меньше порядка побочной параллельной реакции (n1<n2), выход целевого продукта выше в РИС (рис. 8.10, б).
Если целевая и побочная реакция имеют одинаковый порядок (n1 = n2), то выход целевого продукта при равной степени превращения исходного реагента не зависит от выбранного типа реактора (рис. 8.10 в).
Анализ показывает, что в большинстве случаев для достижения высо-кого выхода целевого продукта эффективнее реактор идеального вытеснения, но иногда реактор идеального смешения. Но даже при достижении более высокого выхода целевого продукта при равной степени превращения сырья РИС имеет большие размеры, чем РИВ.
На рис. 8.11 представлен характер изменения движущей силы процесса в реакторах идеального вытеснения и идеального смешения. Из него следует, что величина движущей силы в реакторах идеального вытеснения больше, чем в реакторах идеального смешения.
Т Т
Тs Тs
Тк Тн Тк
Тн Тср Lk Тср Lk
РИВ РИС
Рис. 8.11. Изменение движущей силы процесса в реакторах РИВ и РИС
На рис. 7.11 обозначено:
Тs – предельная температура, достигаемая в процессе;
Тн – начальная температура в процессе;
Тк – конечная температура в реакторе;
Тср – средняя движущая сила процесса;
L – длина (объем) реактора
Применение реакторов, работающих в режиме, близком к идеальному вытеснению, ограниченo рядом факторов. Среди них большое гидравлическое сопротивление трубчатых реакторов, трудность их чистки и т. д.
Этого недостатка лишены РИС, они конструктивно проще РИВ, но в РИС скорость процесса значительно ниже. Для использования преимуществ РИС и одновременного поддержания в реакционной системе высоких концентраций реагентов иногда создают каскад реакторов идеального смешения, который включает последовательное соединение нескольких реакторов.
- Предисловие
- Тема 1 общие понятия о химическом производстве
- 1.1. Химическая технология как наука
- М акрокинетика
- 1.2. Связь химической технологии с другими науками
- Химическая технология
- 1.3. История отечественной химической технологии
- Контрольные вопросы
- Тема 2 компоненты химического производства
- 2.1. Сырье в химическом производстве
- Химическое сырье, классификация
- Кларки наиболее распространенных в земной коре элементов
- 2.2. Энергия в химической технологии
- Энергетические ресурсы
- 2.4. Воздух в химической технологии
- Химический состав сухого воздуха в приземном слое
- Структура вредных выбросов промышленности России
- Контрольные вопросы
- Тема 3 критерии оценки эффективности химического производства
- 3.1. Технико-экономические показатели (тэп)
- 3.2. Структура экономики химического производства
- Контрольные вопросы
- Тема 4 системный подход в изучении химико-техноло-гического процесса
- 4.1. Общие понятия и определения
- 4.2. Химико-технологическая система как объект моделирования
- 4.3. Операторы
- Типовые технологические операторы
- 4.4. Матричное представление моделей
- Матрица инценденций
- Матрица смежности (связи)
- 4.5. Подсистемы хтс
- 4.6. Связи
- 4.7. Классификация технологических схем
- 4.8. Системный подход к разработке технологии производства
- 4.9. Оптимизация производства
- Контрольные вопросы
- Тема 5 общие закономерности химических процессов
- 5.1. Понятие о химическом процессе
- 5.2. Классификация химических реакций
- 5.3. Интенсификация гомогенных процессов
- 5.4. Интенсификация гетерогенных процессов
- 5.5. Интенсификация процессов, основанных на необратимых реакциях
- 5.6. Интенсификация процессов, основанных на обратимых реакциях
- Контрольные вопросы
- Тема 6 гетерогенный катализ
- 6.1. Общие положения катализа
- 6.2. Процессы абсорбции и хемосорбции в гетерогенном катализе
- 6.3. Механизм гетерогенных каталитических процессов
- 6.4. Основные требования к гетерогенным катализаторам
- 6.5. Основные структурные параметры гетерогенных катализаторов
- 6.6. Технологические свойства гетерогенных катализаторов
- 6.7. Классификация гетерогенных катализаторов
- 6.8. Состав катализаторов
- 6.9. Приготовление катализаторов
- Контрольные вопросы
- Тема 7 гомогенный катализ
- 7.1. Кислотный (основной) катализ
- 7.2. Металлокомплексный катализ
- 7.3. Ферментативный катализ
- Контрольные вопросы
- Тема 8 химические реакторы
- 8.1. Принципы классификации химических реакторов
- 8.2. Принципы проектирования химических реакторов
- 8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- 8.3.3. Примеры аналитического решения математической модели (8.22) и (8.23) для частных случаев.
- 8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- 8.5. Конструкции реакторов
- Контрольные вопросы
- Тема 9 производство серной кислоты
- 9.1. Способы производства серной кислоты
- 8.2. Сырье процесса
- 8.3. Промышленные процессы получения серной кислоты
- Влияние параметров процесса на степень превращения so2 в so3
- 9.4. Пути совершенствования сернокислотного производства
- Динамика использования различных источников сырья
- Контрольные вопросы
- Тема 9 производство аммиака
- 10.1. Проблема связанного азота
- 10.2. Получение азота и водорода для синтеза аммиака
- 10.3. Синтез аммиака
- Контрольные вопросы
- Тема 11 переработка нефти
- 11.1. Общие сведения о нефти
- 11.2. Классификация нефтей
- 11.3. Состав нефти
- 11.4. Нефтепродукты
- 11.5. Подготовка нефти на нефтепромыслах
- 11.6. Первичная переработка нефти
- 11.7. Пиролиз
- 11.8. Коксование
- 11.9. Каталитический крекинг
- 11.10. Каталитический риформинг
- 11.11. Гидроочистка
- 11.12. Производство нефтяных масел
- Контрольные вопросы
- Тема 12 переработка каменного угля
- 12.1. Показатели качества каменных углей
- 12.2. Классификация углей
- 12.3. Коксование каменных углей
- Коксование
- Тушение
- Разгонка
- 12.4. Состав прямого коксового газа и его разделение
- 11.5. Переработка сырого бензола
- 12.6. Переработка каменноугольной смолы
- 12.7. Газификация твердого топлива. Процесс Фишера – Тропша
- Контрольные вопросы
- Тема 13 производство стирола
- 13.1. Получение этилбензола
- 13.2. Производство стирола дегидрированием этилбензола
- 13.1.3. Технологическая схема производства стирола дегидрированием этилбензола
- Контрольные вопросы
- Тема 14 производство этанола
- Контрольные вопросы
- Библиографический список
- Содержание
- Тема 5. Общие закономерности химических процессов……………………..54
- Тема 6. Гетерогенный катализ ……………………………………….................64
- Тема 7. Гомогенный катализ……………………………………………………93
- Тема 8. Химические реакторы…………………………………………………101
- Тема 9. Производство серной кислоты……………………………………….123
- Тема 10. Производство аммиака………………………………………………137
- Тема 11. Переработка нефти…………………………………………………...146
- Тема 12. Переработка каменного угля………………………………………..204
- Тема 13. Производство стирола……………………………………………….213
- Тема 14. Производство этанола………………………………………………..218