logo
лекции для сам

Химические свойства спиртов

В молекуле спирта можно выделить три реакционных центра

  1. О-Н-связь: обладает выраженной полярностью вследствие высокой электроотрицательности кислорода по сравнению с водородом, реакции с разрывом О-Н-связи определяют кислотность спирта;

  2. неподеленная электронная пара атома кислорода определяет основность и нуклеофильность спирта;

  3. С-О-связь: также обладает полярностью из-за различия электроотрицательности кислорода и углерода, разрыв С-О-связи характерен для реакций нуклеофильного замещения и β-элиминирования

В соответствии с перечисленными реакционными центрами для спиртов можно выделить следующие реакции:

  1. Кислотно-основные

  2. Нуклеофильное замещение гидроксильной группы

  3. Дегидратация спиртов

  4. Окисление спиртов.

  1. Кислотные и основные свойства спиртов. Спирты способны проявлять себя как кислоты и как основания. Константа диссоциации этанола Ка (рКа=10-16) в 1010 раз выше, чем Ка ацетилена (рКа=10-26).

В силу своих кислотных свойств спирты легко взаимодействуют со щелочными металлами, образуя соли (алкоголяты):

Кислотность спиртов определяется строением алкильного радикала. Так, кислотность в ряду низших спиртов меняется следующим образом:

Н2О (рКа=15.7) > CH3OH (pKa=11.2) > CH3CH2OH (pKa=15.8) > (CH3)2CHOH (pKa=16.9) > (CH3)3COH(pKa=19.2)

Наименьшую кислотность имеет трет-бутиловый спирт, так как соответствующий алкоксид-анион наименее устойчив из-за электронодонорного влияния метильных групп:

Основные свойства спиртов проявляются по отношению к протонным и апротонным кислотам. Донором электронов в молекуле спирта является атом кислорода:

Основность спиртов изменяется в ряду: (CH3)3COH > (CH3)2CHOH > CH3CH2OH > CH3OH

  1. Взаимодействие с неорганическими кислотами

Спирты взаимодействуют с кислородсодержащими минеральными кислотами приводит к образованию сложных эфиров неорганических кислот. Многоосновные кислоты образуют кислые и средние эфиры. Взаимодействие с серной кислотой проводят при низких температурах:

При нагревании этил- и метилсульфатов образуются соответствующие средние эфиры – диэтил- и диметилсульфаты:

Диметилсульфат – хороший метилирующий агент.

Высшие спирты, особенно вторичные и третичные, под действием серной кислоты легко образуют алкены и не образуют эфиров в таких условиях.

Метилнитрат получают взаимодействием метилового спирта с азотной кислотой:

Для получения нитратов двух- и трехатомных спиртов применяют смесь азотной и серной кислот. Многие полинитраты неустойчивы и при ударе взрываются.

Некоторые моноэфиры фосфорной кислоты широко распространены в природе, например, фосфаты углеводов. ДНК и РНК являются полимерными эфирами фосфорной кислоты.

  1. Нуклеофильное замещение гидроксильной группы на галоген

К реакциям нуклеофильного замещения относятся замещение гидроксильной группы на галоген, амино-, алкоксигруппу и др. Гидроксид-анион, который выступает в роли уходящей группы, относится к числу трудно замещаемых групп. Чтобы осуществить нуклеофильное замещение гидроксильной группы в спиртах, последние необходимо модифицировать таким образом, чтобы гидроксид-анион не выступал в роли уходящей группы. Часто реакции проводят в присутствии сильных кислот, в этом случае гидроксильная группа протонируется и отщепляется в виде молекулы воды.

Замещение гидроксильной группы на галоген возможно под действием галогенводородных кислот (HCl, HBr) и галогенидов фосфора и серы.

Наиболее важные химические превращения спиртов связаны с заменой гидроксильной группы на галоген под действием галогенводородных кислот:

Реакция протекает по механизму нуклеофильного замещения. В случае первичных спиртов реализуется SN2 механизм:

Третичные спирты реагируют по SN1 механизму.

При действии PCl3 и PCl5 на спирты также образуются соответствующие галогенпроизводные:

3 CH3CH2-OH+PCl33CH3CH2-Cl+H3PO4

Взаимодействие спиртов с тионилхлоридом SOCl2 происходит по механизму, отличающемуся от рассмотренных ранее:

Атака вступающего нуклеофила происходит с той же стороны, откуда отщепляется уходящая группа, поэтому в молекуле сохраняется взаимное расположение атомов, в отличие от реакций Sn1и SN2. Механизм этой реакции нельзя отнести ни к Sn1, ни к SN2. Его обозначают символом Sni (замещение нуклеофильное внутримолекулярное). Реакция спиртов с SOCl2 в присутствии пиридина протекает иначе, по механизму SN2.