9. Реакции по α-углеродному атому.
Атомы водорода в α-положении относительно карбоксильной группы обладают повышенной подвижностью и склонны вступать в различные реакции замещения, характерные и для альдегидов и кетонов.
а) Реакция Гелля – Фольгарда – Зелинского заключается в замещении α-водородного атома на галоген (хлор или бром) в присутствии фосфора:
В качестве продукта получают галогенангидрид α-галогензамещенной карбоновой кислоты.
б) Сложноэфирная конденсация Кляйзена характерна для сложных эфиров и также основана на повышенной кислотности α-водородных атомов (С-Н кислотность). Реакция катализируется основаниями, например амидом натрия NaNH2 или этилатом натрия С2Н5О-Na+:
Механизм реакции:
Все стадии конденсации Кляйзена обратимы.
Отдельные представители
Муравьиная кислота. Получают из ее натриевой соли (формиата), которая образуется при пропускании оксида углерода через 15-30% раствор щелочи:
NaOH+COHCOO¯Na+
Суспензию формиата натрия затем разлагают муравьиной кислотой.
Муравьиная кислота применяется для приготовления катализаторов, в медицине и в ряде синтезов. Из ее производных наибольшее значение имеет N,N-диметилформамид HCON(CH3)2. Он является селективным растворителем при выделении ацетилена из газовых смесей и при абсорбции НСl, SO2, CO2 и некоторых других газов.
Муравьиная кислота обладает многими химическими свойствами карбоновых кислот, но ей присущи и некоторые специфические особенности:
1) является хорошим восстановителем (легко окисляется):
HCOOH+HgCl2Hg+CO2+ 2HCl
Восстановительные свойства муравьиной кислоты объясняются тем, что она в одно и то же время является кислотой и оксиальдегидом, что видно из ее формулы.
2) при нагревании с концентрированной Н2SO4 распадается с образованием воды и СО:
HCOOHH2O+CO
3) Соли щелочных металлов при сплавлении распадаются с образованием солей щавелевой кислоты (оксалаты):
2 HCOO¯Na+H2++Na¯OOC–COO¯Na+
Уксусная кислота. Широко применяется для получения сложных эфиров, уксусного ангидрида, винилацетата, а также в производстве красителей, лекарственных н душистых веществ. Большое практическое значение имеют и соли уксусной кислоты - натрия, алюминия, хрома, железа, меди, свинца и др. В промышленности уксусная кислота получается рядом способов:
окисление алканов;
окисление этанола;
гидратация ацетилена и окисление получаемого ацетальдегида;
4. уксуснокислое брожение сахарсодержащих растворов.
Высшие жирные кислоты. Встречаются в природе в свободном состоянии и в составе жиров. Низшие члены ряда (С4 – С10) входят в состав липидов молока. Кислоты с длиной цепи С8 – С14 содержатся в маслах некоторых семян. Наиболее распространены в природе пальмитиновая С15Н31СООН и стеариновая С17Н35СООН кислоты.
Лекция 22. ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ КАРБОНОВЫХ кислот, двухосновные карбоновЫЕ кислоты.
- Текст лекций по органической химии
- Самара 2006
- Содержание
- Галогензамещенные углеводороды
- Изомерия
- Номенклатура
- Методы получения
- Замещение гидроксильной группы на галоген
- Физические свойства
- Характеристики связей с‑х
- 1. Нуклеофильное замещение
- 2. Реакция элиминирования (отщепление)
- 3. Восстановление галогеналканов
- 4. Металлоорганические соединения
- Углеводородов Галогенпроизводные ароматических углеводородов
- Ненасыщенные галогенпроизводные
- Ароматические галогенпроизводные
- Химические свойства
- Отдельные представители
- Спирты и фенолы
- Лабораторные методы получения спиртов
- 2. Гидратация алкенов
- 3. Восстановление карбонильных соединений (кетонов и альдегидов), сложных эфиров
- 4. Синтезы спиртов с использованием реактивов Гриньяра
- Промышленные методы получения спиртов
- Физические свойства спиртов
- Химические свойства спиртов
- 3. Реакции отщепления
- 4. Окисление
- Отдельные представители
- ДвухАтомные спирты
- Изомерия и номенклатура
- Способы получения
- Трехатомные спирты
- Ненасыщенные спирты
- Способы получения фенолов
- 1. Коксование каменного угля
- 2. Замещение галогена в ароматических соединениях
- 3. Способ Рашига
- 4.Сульфонатный способ
- 5. Кумольный метод
- 6. Из солей диазония
- Строение фенолов
- Химические свойства фенолов
- Отдельные представители
- Альдегиды и кетоны
- Способы получения альдегидов и кетонов
- 2. Гидроформилирование алкенов (оксосинтез)
- 4. Термическое разложение Са- и Ва-солей карбоновых кислот
- Физические свойства альдегидов и кетонов
- Электронное строение и общая характеристика реакционной способности
- Химические свойства альдегидов и кетонов
- Реакции присоединения
- 2. Присоединение спиртов.
- Основной катализ
- Реакции с участием α-водородного атома
- 2. Галогенирование альдегидов и кетонов
- Окислительно–восстановительные реакции
- Отдельные представители
- Химические свойства
- Химические свойства
- Способы получения
- Физические свойства
- Химические свойства
- 3. Бензоиновая конденсация (н.Н. Зинин)
- Отдельные представители
- Карбоновые кислоты
- Кислоты
- Промышленные способы получения карбоновых кислот
- Лабораторные способы получения карбоновых кислот
- 5. Гидролиз жиров
- Эта операция называется омылением, так как соли карбоновых кислот используют для изготовления мыла. Физические свойства
- 1. Диссоциация карбоновых кислот
- 8. Восстановление кислот (реакции по карбонильной группе)
- 9. Реакции по α-углеродному атому.
- Ненасыщенные кислоты
- Функциональные производные карбоновых кислот
- Ангидриды карбоновых кислот
- Нитрилы
- Способы получения
- Химические свойства
- Соли карбоновых кислот
- Двухосновные насыщенные кислоты
- Ненасыщенные одноосновные kapбоhobыe кислоты
- Отдельные представители
- Ненасыщенные двухосновные kapбоhobыe кислоты
- Способы получения
- 1. Превращение функциональных групп
- 1.3. Реакция Канниццаро:
- Отдельные представители
- Дикарбоновые ароматические кислоты
- Азотсодержащие соединения
- Номенклатура
- Способы получения нитроалканов
- 1. Нитрование алканов азотной кислотой (Коновалов, Хэсс)
- 2. Реакция Мейера (1872)
- Строение нитроалканов
- Физические свойства
- Химические свойства
- 1. Образование солей
- 2. Реакции с азотистой кислотой
- 3. Синтез нитроспиртов
- 4. Восстановление нитросоединений
- 5. Взаимодействие нитросоединений с кислотами
- Отдельные представители
- Соединения с нитрогруппой в ядре
- Получение ароматических нитросоединений
- Нитросоединения с нитрогруппой в боковой цепи (жирноароматические соединения)
- Химические свойства
- 1. Восстановление
- 2. Реакции электрофильного замещения
- 3. Реакции нуклеофильного замещения
- Отдельные представители
- Способы получения алифатических аминов
- 1. Аммонолиз галогеналканов
- 2. Аммонолиз спиртов
- 3. Синтез Габриэля
- 4. Восстановительное аминирование карбонильных соединений
- 5. Восстановление нитроалканов, оксимов, нитрилов, амидов
- 6. Расщепление амидов кислот (перегруппировка Гофмана)
- 7. Перегруппировка Курциуса
- Физические свойства
- Химические свойства аминов
- 1. Реакции аминов с кислотами
- 2. Алкилирование аминов галогеналканами
- 3. Ацилирование аминов (получение амидов)
- 4. Взаимодействие с азотистой кислотой
- 5. Образование изонитрилов
- Отдельные представители
- Способы получения ароматических аминов
- 1. Алкилирование ароматических аминов
- 2. Ацилирование ароматических аминов
- 3. Синтез азометинов (оснований Шиффа)
- 4. Реакции аминов с азотистой кислотой
- Важнейшие представители ароматических аминов
- Получение солей диазония
- Химические свойства
- 1. Замещение на гидроксигруппу
- 2. Замещение на галоген
- 3. Замещение на cn
- Понятие об азокрасителях
- Гетероциклические соединения
- Физические свойства
- Строение пятичленных гетероциклов
- Общие химические свойства
- 2. Реакции присоединения
- 6) Получение ртутных производных
- Химические свойства
- 1) Хлорирование
- 3) Сульфирование
- 4) Нитрование
- 2. Нуклеофильное замещение
- 3. Реакции пиридина как основания