1.3. Реакция Канниццаро:
1.4. Гидролиз галогенпроизводных. Этот способ широко применяется в технике. При хлорировании толуола получают три вида галогенпроизводных: хлористый бензил для производства бензилового спирта; хлористый бензилиден - для получения бензальдегида; бензотрихлорид перерабатывается на бензойную кислоту.
1.5. Гидролиз нитрилов
2. Введение карбоксильной группы в ароматическое ядро
2.1. Применение фосгена (боевое отравляющее вещество!) дает возможность получить хлорангидрид кислоты, а затем кислоту (или ряд ее производных):
Реакция протекает по механизму электрофильного ароматического замещения, катализируемого кислотами Льюиса.
2.2. Ацилирование эфирами хлоругольной кислоты
2.3. Через стадию формилирования
2.4. Через стадию ацилирования ароматических углеводородов
2.5. Синтез на основе металлоорганических реагентов
Физические свойства
Монокарбоновые кислоты ароматического ряда – бесцветные кристаллические вещества с температурой плавления выше 100°С. Кислоты с заместителями в п-положении плавятся при гораздо более высоких температурах, чем их изомеры. Температуры кипения и плавления ароматических кислот выше, чем у кислот жирного ряда с тем же числом углеродных атомов. Монокарбоновые кислоты плохо растворяются в холодной воде и значительно лучше в горячей. Низшие ароматические кислоты летучи с парами воды.
Химические свойства
В водных растворах ароматические монокарбоновые кислоты обнаруживают большую степень диссоциации, чем алифатические кислоты (Ка бензойной кислоты 6,3∙10-5, Ка уксусной кислоты 1,8∙10-5). Большая степень диссоциации бензойной кислоты обусловлена отрицательным индуктивным эффектом бензольного кольца, приводящим к некоторой стабилизации карбоксилат – аниона:
Сравнивая силу ряда замещенных бензойных кислот с силой бензойной кислоты, видно, что константа диссоциации сильно зависит от природы заместителя и его положения в ядре.
Таблица 23.1
Константы диссоциации замещенных бензойных кислот, 105
Положение R | Заместитель | |||||
Н | СН3 | ОСН3 | F | Cl | NO2 | |
орто | 6.27 | 12.3 | 8.06 | 54.10 | 11.40 | 6.71 |
мета | 6.27 | 5.35 | 8.17 | 13.60 | 14.80 | 32.10 |
пара | 6.27 | 4.24 | 3.38 | 7.22 | 10.50 | 37.00 |
Гаммет и другие исследователи обнаружили количественную закономерность: простую линейную зависимость между логарифмом константы скорости реакции или равновесия и логарифмом константы диссоциации соответствующих замещенных бензойных кислот. Позднее в 1937 году Гаммет выразил эту зависимость в виде уравнения:
lg k = lg k0 + ρ lg (K/K0),
где k и k0 – константы скорости реакции или равновесия, К и К0 – константы диссоциации соответствующих мета- и пара-замещенных и незамещенной бензойных кислот в воде при 25°С. Если принять
lg (K/K0) = σ
то зависимость приобретает следующий вид:
lg k = lg k0 + ρσ,
где σ получила название константы заместителя, ρ – постоянная величина, характеризующая реакционную серию и зависящая от типа реакции, природы реакционного центра и условий реакции (растворителя, температуры).
Таблица 23.2
Некоторые константы заместителей
Заместитель | | Заместитель | | ||
мета | пара | мета | пара | ||
Оˉ | –0.708 | –1.000 | NH2 | –0.661 | –0.660 |
ОН | +0.121 | –0.370 | N(CH3)2 | +0.880 | +0.820 |
ОСН3 | +0.115 | –0.268 | NO2 | +0.710 | +0.778 |
СН3 | –0.069 | –0.170 | F | +0.337 | +0.062 |
Н | 0.000 | 0.000 | Cl | +0.373 | +0.227 |
С6Н5 | +0.060 | –0.010 | COOH | +0.355 | +0.406 |
В таблице 23.3 приведены величины константы заместителей σ. Константы позволяют дать количественную оценку полярного характера соответствующих заместителей. Чем большими электроноакцепторными свойствами обладает заместитель, тем более положительно значение (по отношению к Н). И наоборот, чем сильнее заместитель подает электроны, тем более отрицательно для него значение .
Согласно уравнению Гаммета относительная реакционная способность (в логарифмической форме) замещенных производных бензола пропорциональна константе заместителя. Для каждой данной реакции график зависимости lg (k/k0) или lg (К/К0) от линейный с углом наклона равным ρ, которую называют константой реакции и которая служит мерой чувствительности реакции к электронным эффектам заместителей (в м- и п-положениях). Высокое значение ρ означает большую чувствительность реакции к влиянию заместителей.
Ароматические кислоты вступают во все те реакции, которые свойственны и кислотам жирного ряда. По карбоксильной группе образуются различные производные кислот: действием щелочей и карбонатов на кислоты получаются соли, эфиры - нагреванием смеси кислоты и спирта в присутствии минеральной кислоты.
Если заместителей в орто-положении нет, то этерификация карбоксильной группы происходит также легко, как и в случае алифатических кислот. Если одно из орто-положений замещено, то скорость этерификации сильно уменьшается, а если заняты оба орто-положения, то этерификация не идет.
Эфиры орто-замещенных бензойных кислот могут быть получены реакцией серебряных солей с галогеналканами. Эти эфиры с трудом подвергаются гидролизу. Такое явление носит название пространственных (стерических) затруднений. Группы, большие по объему, чем водород, в такой степени заполняют пространство вокруг углеродного атома карбоксильной группы, что затрудняет переход в промежуточное состояние при образовании или омылении эфира.
Хлорангидриды получаются действием на кислоты хлористого тионила или пятихлористого фосфора:
С6Н5СООН + SOCl2 С6Н5СОCl + SO2 + HCl
Ангидриды получают перегонкой смеси кислоты с уксусным ангидридом или действием хлорангидридов на соли:
С6Н5СОCl + С6Н5СООNa (С6Н5СО)2О + 2 NaCl
При сплавлении соли ароматической карбоновой кислоты со щелочью карбоксильная группа замещается на водород:
С6Н5СОО¯ Na+ + NaOH C6H6 + Na2CO3
- Текст лекций по органической химии
- Самара 2006
- Содержание
- Галогензамещенные углеводороды
- Изомерия
- Номенклатура
- Методы получения
- Замещение гидроксильной группы на галоген
- Физические свойства
- Характеристики связей с‑х
- 1. Нуклеофильное замещение
- 2. Реакция элиминирования (отщепление)
- 3. Восстановление галогеналканов
- 4. Металлоорганические соединения
- Углеводородов Галогенпроизводные ароматических углеводородов
- Ненасыщенные галогенпроизводные
- Ароматические галогенпроизводные
- Химические свойства
- Отдельные представители
- Спирты и фенолы
- Лабораторные методы получения спиртов
- 2. Гидратация алкенов
- 3. Восстановление карбонильных соединений (кетонов и альдегидов), сложных эфиров
- 4. Синтезы спиртов с использованием реактивов Гриньяра
- Промышленные методы получения спиртов
- Физические свойства спиртов
- Химические свойства спиртов
- 3. Реакции отщепления
- 4. Окисление
- Отдельные представители
- ДвухАтомные спирты
- Изомерия и номенклатура
- Способы получения
- Трехатомные спирты
- Ненасыщенные спирты
- Способы получения фенолов
- 1. Коксование каменного угля
- 2. Замещение галогена в ароматических соединениях
- 3. Способ Рашига
- 4.Сульфонатный способ
- 5. Кумольный метод
- 6. Из солей диазония
- Строение фенолов
- Химические свойства фенолов
- Отдельные представители
- Альдегиды и кетоны
- Способы получения альдегидов и кетонов
- 2. Гидроформилирование алкенов (оксосинтез)
- 4. Термическое разложение Са- и Ва-солей карбоновых кислот
- Физические свойства альдегидов и кетонов
- Электронное строение и общая характеристика реакционной способности
- Химические свойства альдегидов и кетонов
- Реакции присоединения
- 2. Присоединение спиртов.
- Основной катализ
- Реакции с участием α-водородного атома
- 2. Галогенирование альдегидов и кетонов
- Окислительно–восстановительные реакции
- Отдельные представители
- Химические свойства
- Химические свойства
- Способы получения
- Физические свойства
- Химические свойства
- 3. Бензоиновая конденсация (н.Н. Зинин)
- Отдельные представители
- Карбоновые кислоты
- Кислоты
- Промышленные способы получения карбоновых кислот
- Лабораторные способы получения карбоновых кислот
- 5. Гидролиз жиров
- Эта операция называется омылением, так как соли карбоновых кислот используют для изготовления мыла. Физические свойства
- 1. Диссоциация карбоновых кислот
- 8. Восстановление кислот (реакции по карбонильной группе)
- 9. Реакции по α-углеродному атому.
- Ненасыщенные кислоты
- Функциональные производные карбоновых кислот
- Ангидриды карбоновых кислот
- Нитрилы
- Способы получения
- Химические свойства
- Соли карбоновых кислот
- Двухосновные насыщенные кислоты
- Ненасыщенные одноосновные kapбоhobыe кислоты
- Отдельные представители
- Ненасыщенные двухосновные kapбоhobыe кислоты
- Способы получения
- 1. Превращение функциональных групп
- 1.3. Реакция Канниццаро:
- Отдельные представители
- Дикарбоновые ароматические кислоты
- Азотсодержащие соединения
- Номенклатура
- Способы получения нитроалканов
- 1. Нитрование алканов азотной кислотой (Коновалов, Хэсс)
- 2. Реакция Мейера (1872)
- Строение нитроалканов
- Физические свойства
- Химические свойства
- 1. Образование солей
- 2. Реакции с азотистой кислотой
- 3. Синтез нитроспиртов
- 4. Восстановление нитросоединений
- 5. Взаимодействие нитросоединений с кислотами
- Отдельные представители
- Соединения с нитрогруппой в ядре
- Получение ароматических нитросоединений
- Нитросоединения с нитрогруппой в боковой цепи (жирноароматические соединения)
- Химические свойства
- 1. Восстановление
- 2. Реакции электрофильного замещения
- 3. Реакции нуклеофильного замещения
- Отдельные представители
- Способы получения алифатических аминов
- 1. Аммонолиз галогеналканов
- 2. Аммонолиз спиртов
- 3. Синтез Габриэля
- 4. Восстановительное аминирование карбонильных соединений
- 5. Восстановление нитроалканов, оксимов, нитрилов, амидов
- 6. Расщепление амидов кислот (перегруппировка Гофмана)
- 7. Перегруппировка Курциуса
- Физические свойства
- Химические свойства аминов
- 1. Реакции аминов с кислотами
- 2. Алкилирование аминов галогеналканами
- 3. Ацилирование аминов (получение амидов)
- 4. Взаимодействие с азотистой кислотой
- 5. Образование изонитрилов
- Отдельные представители
- Способы получения ароматических аминов
- 1. Алкилирование ароматических аминов
- 2. Ацилирование ароматических аминов
- 3. Синтез азометинов (оснований Шиффа)
- 4. Реакции аминов с азотистой кислотой
- Важнейшие представители ароматических аминов
- Получение солей диазония
- Химические свойства
- 1. Замещение на гидроксигруппу
- 2. Замещение на галоген
- 3. Замещение на cn
- Понятие об азокрасителях
- Гетероциклические соединения
- Физические свойства
- Строение пятичленных гетероциклов
- Общие химические свойства
- 2. Реакции присоединения
- 6) Получение ртутных производных
- Химические свойства
- 1) Хлорирование
- 3) Сульфирование
- 4) Нитрование
- 2. Нуклеофильное замещение
- 3. Реакции пиридина как основания