3. Набухание и растворение вмс
В отличие от процесса растворения низкомолекулярного вещества, при котором происходит в основном диффузия растворяемого вещества в растворитель, начальная стадия процесса растворения ВМС заключается в диффузии молекул растворителя в объем полимера. Проникновение молекул растворителя в объем полимера сопровождается процессом набухания. Растворение макромолекул обязательно проходит через стадию набухания, являющуюся характерной качественной особенностью веществ этого типа. При набухании молекулы растворителя проникают в твердый полимер и раздвигают макромолекулы. Последние, из-за своего большого размера, медленно диффундируют в раствор, что внешне проявляется в увеличении объема полимера. Набухание может быть неограниченным, когда конечным его результатом является переход полимера в раствор, и ограниченным, если набухание не доходит до растворения полимера.
Неограниченное набухание – это набухание, заканчивающееся растворением, когда полимер сначала поглощает растворитель, а затем при той же температуре переходит в раствор, образуя однофазную гомогенную систему. Так набухают каучуки в углеводородах, биополимеры в воде. Ограниченно набухают полимеры, имеющие химические связи-мостики между молекулами, которые лишают полимер свойства текучести, не позволяют его молекулам оторваться друг от друга и перейти в раствор. Примером ограниченно набухающего полимера с мостиковыми связями между молекулами является вулканизированный каучук, в котором мостиками служат атомы серы или полярные группировки.
Процесс набухания с точки зрения термодинамики характеризуется уменьшением энергии Гиббса DG = DH ─ TDS < 0, и состоит из двух этапов или стадий.
1 стадия – энергетическая, характеризуется сольватацией (гидратацией) полимера: DН < 0; DS ≈ 0.
При этом |TDS| < |DH| , поэтому DG < 0 за счет уменьшения энтальпии (экзотермическая стадия).
2 стадия – энтропийная, характеризуется активным разрахлением сетки ВМС, увеличением объема полимера, поэтому энтропия возрастает, а энтальпия практически не меняется: DН ≈ 0; DS > 0; TDS > 0.
Уменьшение энергии Гиббса DG < 0 происходит за счет возрастания энтропии.
Процесс растворения можно условно разделить на несколько стадий. В первой стадии (рис. 52, а) до начала растворения система состоит из компонентов: низкомолекулярной жидкости и полимера. Макромолекулы полимеров гибкие, и маленькие молекулы растворителя проникают в полимер, раздвигают звенья цепей полимера, разрыхляя его. Расстояния между молекулами в образце полимера, таким образом, становятся больше, что сопровождается увеличением его массы и объема. Вторая стадия растворения (рис. 52, б) заключается в том, что по мере набухания объем полимера и расстояние между макромолекулами увеличивается настолько, что макромолекулы начинают отрываться друг от друга и переходить в слой низкомолекулярной жидкости. В третьей стадии растворения (рис. 52, в) молекулы полимера равномерно распределяются по своему объему системы, образуя истинный гомогенный раствор.
Рис. 52. Последовательные стадии взаимного растворения
высокомолекулярного соединения в низкомолекулярной жидкости
При набухании объем и масса полимера увеличиваются в результате поглощения низкомолекулярной жидкости.
Количественной мерой набухания является степень набухания (α), которая может иметь объемное и массовое выражение:
или
где V и V0, m и m0 – соответственно объемы и массы исходного и набухшего образца полимера.
Степень набухания, прежде всего, зависит от природы полимера, то есть от жесткости его цепей, обусловленной межмолекулярными взаимодействиями между ними, и лиофильности его макромолекул (сродства к растворителю).
Если создать препятствие увеличению объема набухающего тела, то развивается давление называемое давление набухания (Рнаб), которое можно рассчитать по эмпирическому уравнению Позняка:
Рнаб = Kcn, где K – константа, зависящая от природы полимера и растворителя, с – концентрация ВМС, n 3, не зависит от природы ВМС и растворителя.
Процесс набухания сопровождается значительным увеличением давления массы полимера, которое может достигать сотен мПа. Поскольку давление создается в результате односторонней диффузии растворителя в полимер, то оно аналогично осмотическому давлению.
Факторы, влияющие на процесс набухания
Степень набухания зависит от природы полимера и растворителя. По правилу «подобное в подобном» полярные биополимеры (белки, полисахариды, нуклеиновые кислоты) хорошо набухают в воде, а в мало полярных или неполярных растворителях набухают значительно хуже.
На процесс набухания полимеров в воде влияет присутствие электролитов и значение рН среды. Влияние электролитов своеобразно прежде всего тем, что влияние оказывают в основном анионы, а катионы – лишь в незначительной степени. Причем одни анионы усиливают набухание, а другие ослабляют:
Подавляют набухание Способствуют набуханию
S O < F– < CH3COO– < Cl– ≈ NO < Br– < I– < CNS–
Увеличение поляризуемости аниона
У величение степени гидратации, усиление высаливающего действия
В лияние рН среды на набухание полимера больше всего проявляется в растворах белков (рис.53), поскольку их молекулы – полиамфолиты. Так, минимум набухания белков лежит в области их изоэлектрической точки рН = pI. По разные стороны этой точки степень набухания возрастает и, достигнув максимумов, вновь уменьшается.
Рис. 53. Влияние рН раствора на набухание белков
В ИЭТ(pI) степень набухания наименьшая, так как разноименнозаряженные частицы притягиваются друг к другу, конформация макромолекул уплотняется и способность к набуханию уменьшается.
Вдали от ИЭТ(pI) макромолекулы приобретают либо положительный, либо отрицательный заряд. Одноименные заряды отталкиваются, структура макромолекул разрыхляется, и способность к набуханию возрастает.
На процесс набухания влияет возраст биополимера: чем он моложе, тем больше выражена способность к набуханию. Постепенное старение организма сопровождается снижением скорости обменных процессов, «усыханием», появляются морщины.
На процесс набухания влияет и температурный фактор: нагревание способствует увеличению скорости набухания, при этом степень предельного набухания уменьшается.
Кинетика процесса набухания представлена на рис.54.
При ограниченном набухании степень набухания α достигает предельного значения, после чего не зависит от времени. Так набухают амилоза (составляющая крахмала) и желатин в теплой воде. В этих условиях межмолекулярные взаимодействия в полимере достаточно сильны, и растворитель не в состоянии разобщить макромолекулы, поэтому набухание прекращается. В горячей воде амилоза и желатин набухают неограниченно, при этом значение α вначале возрастает, а затем падает до нуля в результате постепенного растворения желатина или амилозы.
Рис. 54. Кинетика процесса набухания ВМС
Набухание играет важную биологическую роль:
Набухание белков пищи при кулинарной обработке и в процессе пищеварения.
Набухание – один их элементов сокращения мышц.
Набухание наблюдается при образовании отеков, опухоли.
Употребление в пищу непроваренных бобовых может привести к их набуханию в ЖКТ и возникновению давления набухания на стенки кишечника.
Первой фазой прорастания зерен является их набухание.
Рост и развитие живых организмов.
- 060101 65 – Лечебное дело, 060103 65 – Педиатрия, 060105 65 – Стоматология, 060104 65 – Медико-профилактическое дело
- Тема 1. Поверхностные явления 12
- Предисловие
- Введение
- Тема 1. Поверхностные явления
- 1. Свободная поверхностная энергия, поверхностное натяжение
- 2. Смачивание, адгезия, когезия
- 3. Сорбция и ее виды
- Абсорбция
- Адсорбция на подвижной поверхности раздела фаз
- Адсорбция пав в системе воздух-вода
- Адсорбция на неподвижной поверхности раздела фаз
- Молекулярная (неэлектролитов) адсорбция из растворов.
- Адсорбция ионов из растворов
- Ионообменная адсорбция
- Основные физико-химические характеристики ионитов
- 4. Хроматография
- 5. Биологические поверхностно-активные вещества
- 6. Медико-биологическое значение адсорбции
- Типы сорбентов, использующихся для удаления различных веществ
- Основные области применения энтеросорбентов
- Тема 2. Дисперсные системы
- 1. Классификация дисперсных систем
- Свободно- и связнодисперсные системы
- Лиофобные и лиофильные дисперсные системы
- Классификация дс по агрегатному состоянию дисперсной фазы и дисперсионной среды
- 2. Методы получения и очистки дисперсных систем
- Методы очистки дисперсных систем
- 3. Лиофобные коллоидные растворы
- Строение мицелл в лиофобных коллоидных растворах
- Устойчивость лиофобных коллоидных растворов
- Кинетика коагуляции
- Механизм коагуляции
- Пептизация или физико-химическое диспергирование
- Коллоидная защита и флокуляция
- 4. Лиофильные коллоидные растворы
- Истинный раствор ((;(( коллоидный раствор.
- Зависимость области применения пав от значения глб
- Свойства лиофильных коллоидных растворов пав и вмс
- Ослабление высаливающего действия
- Солюбилизация
- 5. Микрогетерогенные дисперсные системы
- Аэрозоли и их свойства
- Порошки и их свойства
- Суспензии и их свойства
- Эмульсии и их свойства
- Пены и их свойства
- Тема 3. Свойства вмс и их растворов
- Классификация вмс
- Полимерные полиэлектролиты и их свойства
- Свойства растворов вмс, общие с истинными растворами:
- Кислотно-основные свойства белков
- Значения pI белков живого организма
- Окислительно-восстановительные свойства белков
- Комплексообразующие свойства белков
- Поверхностные свойства белков
- 3. Набухание и растворение вмс
- 4. Вязкость растворов вмс
- 5. Осмотические свойства растворов вмс
- 6. Мембранное равновесие Доннана
- 7. Устойчивость и разрушение растворов вмс
- 8. Застудневание (желатинирование). Возникновение связнодисперсных систем и их свойства
- Обучающие тесты
- Обучающие задачи
- Учебно-исследовательские лабораторные работы
- Тема I. Поверхностные явления
- Тема: Адсорбция уксусной кислоты на активированном угле. Качественные опыты по адсорбции и хроматографии
- Тема: Определение обменной емкости ионита
- Тема: Изотерма поверхностного натяжения и адсорбции изоамилового спирта на твердом адсорбенте
- Учебно-исследовательская лабораторная работа № 4 Тема: Изучение адсорбции пав на твердом адсорбенте из водных растворов
- Тема II. Дисперсные системы
- Тема: Получение и свойства лиофобных коллоидных растворов
- Конденсационный метод получения золей (химическая конденсация)
- II. Дисперсионный метод получения золей.
- Тема: Устойчивость и коагуляция лиофобных коллоидных растворов. Коллоидная защита
- Тема: Получение и свойства эмульсий
- Тема III. Растворы вмс
- Учебно-исследовательская лабораторная работа №8
- Тема: Вискозиметрическое определение молекулярной
- Массы полимера
- Тема: Набухание вмс
- Тестовые задания, задачи, упражнения для самостоятельного решения
- Тема 1. Поверхностные явления
- Тема II. Дисперсные системы
- Тема III. Растворы вмс
- Тестовый контроль по теме: «Поверхностные явления».
- Тестовый контроль по теме: «Лиофобные коллоидные растворы»
- Тестовый контроль по теме: «Свойства вмс и их растворов».
- Темы реферативных докладов для студентов лечебного, педиатрического, стоматологического и медико-профилактического факультетов
- Список использованной литературы
- Приложение
- 1. Основные единицы измерения физических величин
- 2. Основные физические постоянные
- 3. Метрическая система мер
- 4. Множители и приставки для образования десятичных кратных и дольных единиц и их обозначения
- 5. Плотность пав в жидком состоянии
- 6. Зависимость поверхностного натяжения воды от температуры
- 7. Поверхностное натяжение жидкостей при 293 k
- Зависимость адсорбции газов на древесном угле от
- 9. Золотые числа
- 10. Критические концентрации мицеллообразования для некоторых мыл
- 11. Значения констант в уравнении Марка-Хаувинка и омм полимеров