2.5.1. Крекинг алканов
Крекинг - реакции расщепления углеродного скелета крупных молекул при нагревании и в присутствии катализаторов .
При температуре 450 – 700С алканы распадаются за счет разрыва связей С–С (более прочные связи С–Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.
Например:
C6H14 C2H6 + C4H8
Распад связей происходит гомолитически с образованием свободных радикалов:
Свободные радикалы очень активны. Один из них (например, этил) отщепляет атомарный водород Н от другого (н-бутила) и превращается в алкан (этан). Другой радикал, став двухвалентным, превращается в алкен (бутен-1) за счет образования –связи при спаривании двух электронов у соседних атомов:
Разрыв С–С–связи возможен в любом случайном месте молекулы. Поэтому образуется смесь алканов и алкенов с меньшей, чем у исходного алкана, молекулярной массой.
В общем виде этот процесс можно выразить схемой:
CnH2n+2 CmH2m + CpH2p+2, где m + p = n
При более высокой температуре (свыше 1000С) происходит разрыв не только связей С–С, но и более прочных связей С–Н. Например, термический крекинг метана используется для получения сажи (чистый углерод) и водорода:
СН4 C + 2H2
- Часть II
- 1. Введение
- 1.1. Многообразие углеводородов
- 1.2. Классификация углеводородов
- 2.1. Гомологический ряд алканов
- 2.2. Строение алканов
- 2.3. Изомерия алканов
- 2.3.1. Структурная изомерия алканов
- 2.3.2. Поворотная изомерия алканов
- 2.3.3. Зеркальная (оптическая) изомерия
- 2.4. Номенклатура
- 2.4.1. Радикалы в ряду алканов
- 2.4.2. Правила построения названий алканов по систематической международной номенклатуре июпак
- 2.4.3. Назовем соединение по номенклатуре июпак
- 2.5. Химические свойства алканов
- 2.5.1. Крекинг алканов
- 2.5.2. Изомеризация алканов
- 2.5.3. Дегидрирование алканов
- 2.5.4. Реакции окисления алканов
- 2.5.5. Реакции замещения
- 2.6. Галогеналканы
- 2.7. Получение алканов
- 2.8. Применение алканов
- 3.1. Изомерия циклоалканов
- 3.2. Свойства циклоалканов
- 3.3. Получение циклоалканов
- I. Br2, h; II. Br2 (вода); III. HCl; IV. KMnO4 (водн. Р-р).
- 6. Какие соединения образуются при действии металлического натрия на следующие вещества:
- 4. Алкены
- Vrml-модель (2 камеры, 109300 байт).
- Vrml-модель (37448 байт)
- 4.2. Номенклатура алкенов
- 2 Атома с этан этен; 3 атома с пропан пропен и т.Д.
- 4.3. Изомерия алкенов
- 4.3.1. Структурная изомерия алкенов
- 4.3.2. Пространственная изомерия алкенов
- Vrml-модель
- 4.4. Свойства алкенов
- 4.4.1 Реакции присоединения к алкенам
- 4.4.1.1. Гидрирование (присоединение водорода)
- 4.4.1.2. Галогенирование (присоединение галогенов)
- 4.4.1.3. Гидрогалогенирование (присоединение галогеноводородов)
- 4.4.1.5. Полимеризация алкенов
- 4.4.2. Реакции окисления алкенов
- 4.4.3. Изомеризация алкенов
- 4.5. Получение алкенов
- 4.6. Применение алкенов
- 4.7. Контрольные вопросы
- 1. Какие модели соответствуют молекулам алкенов?
- Тройная связь в ацетилене
- 6.2. Номенклатура алкинов
- 6.3. Изомерия алкинов
- 6.4. Свойства алкинов
- 6.4.2. Образование солей
- 6.4.3. Окисление алкинов
- 6.5. Получение алкинов
- 7.1. Строение бензола
- Cтроение бензола
- 7.2. Гомологи бензола. Номенклатура и изомерия
- 7.3. Свойства аренов
- 7.3.1. Реакции замещения в бензольном кольце
- 1. Галогенирование
- 2. Нитрование
- 7.3.2. Замещение в алкилбензолах
- 7.3.3. Реакции присоединения к аренам
- 7.3.4. Реакции окисления аренов
- 7.4. Получение ароматических углеводородов
- 7.5. Применение ароматических углеводородов
- 9. Заключение. Генетическая связь между углеводородами
- 4.5. Получение алкенов