4.2.1. Энергетика химических превращений
216. Приведите пример термохимического уравнения.
217. При стандартных условиях теплота сгорания водорода в кислороде равна 286,2 кДж/моль, а теплота сгорания водорода в озоне равна 333,9 кДж/моль. Чему равна теплота образования озона из кислорода при стандартных условиях?
218. При стандартных условиях теплота полного хлорирования графита равна 103,3 кДж/моль, а теплота полного хлорирования алмаза равна 105,6 кДж/моль. Чему равна теплота превращения графита в алмаз при стандартных условиях?
219. При стандартных условиях теплота полного бромирования белого фосфора равна 229,1 кДж/моль, а теплота бромирования красного фосфора равна 212,3 кДж/моль. Чему равна теплота превращения красного фосфора в белый при стандартных условиях?
220. При сгорании 2 моль этилена в кислороде выделилось 2822 кДж теплоты. Определите теплоту образования этилена, если стандартные теплоты образования CO2 и H2O равны 393 кДж/моль и 286 кДж/моль, соответственно.
221. Даны три уравнения химических реакций:
H2(г) + 1/2O2(г) = H2O(ж) + 68,3 ккал.
CaO(тв) + H2O(ж) = Ca2+(водн) + 2OH–(водн) + 19,5 ккал,
Ca(тв) + 2H2O(ж) = Ca2+(водн) + 2OH–(водн) + H2(г) + 109 ккал.
Определите тепловой эффект реакции
Ca(тв) + 1/2 O2(г) = CaO(тв) + Q.
222. Как известно, высокотемпературное пламя ацетилено-кислородных горелок широко используется для сварки и резки металлов. Можно ли для аналогичных целей использовать пламя метано-кислородной горелки? Рассчитайте, в какой из двух указанных типов горелок и во сколько раз выделится больше теплоты при сгорании одинаковых объемов ацетилена и метана. Теплоты образования CH4, C2H2, CO2 и H2O равны +75, –230, +393, +286 кДж/моль, соответственно.
223. Тонко измельченную смесь алюминия и железной окалины (Fe3O4), часто называемую термитом, применяют для сварки металлических изделий, поскольку при поджигании термита выделяется большое количество теплоты, и развивается высокая температура. Рассчитайте минимальную массу термитной смеси, которую необходимо взять для того, чтобы выделилось 665,3 кДж теплоты в процессе алюмотермии, если теплоты образования Fe3O4 и Al2O3 равны 1117 кДж/моль и 1670 кДж/моль, соответственно.
224. При сжигании паров этанола в кислороде выделилось 494,2 кДж теплоты, и осталось 19,7 л непрореагировавшего кислорода (измерено при давлении 101,3 кПа и температуре 27 C). Рассчитайте массовые доли компонентов в исходной смеси, если известно, что теплоты образования оксида углерода (IV), паров воды и паров этанола составляют 393,5 кДж/ /моль, 241,8 кДж/моль и 277,0 кДж/моль, соответственно.
225. Два вещества имеют молярные массы M1 и M2 (M1 > M2) и молярные теплоты сгорания Q1 и Q2 (Q1 > Q2), соответственно. Изобразите графически зависимость теплоты сгорания одного моля смеси этих веществ от а) мольной доли первого вещества, б) массовой доли первого вещества.
226. 48 г минерала, содержащего 46,7% железа и 53,3% серы по массе, сожгли в избытке кислорода, а твердый продукт сгорания прокалили с 18,1 г алюминия. Какое количество теплоты выделилось в результате каждого из этих процессов, если известно, что реакции проводились при постоянной температуре, а теплоты образования при данной температуре равны: сульфид железа 174 кДж/моль, оксид железа (III) 824 кДж/моль, оксид серы (IV) 297 кДж/моль, оксид алюминия 1675 кДж/моль?
227. Определите теплоту образования XeF4 из простых веществ, если известно, что энергия связи Xe–F в этом соединении равна 130 кДж/моль, а энергия связи F–F равна 158 кДж/моль.
228. Непредельный углеводород норборнадиен при освещении изомеризуется в предельный углеводород квадрициклан, а при действии катализатора протекает обратная реакция:
.
Эта реакция может быть использована в фотохимических аккумуляторах солнечной энергии.
При полном сгорании 1,00 г норборнадиена и квадрициклана выделяется, соответственно, 39,8 и 41,9 кДж теплоты.
1) Напишите уравнение реакций сгорания.
2) Определите мольные теплоты образования данных углеводородов, если теплоты образования углекислого газа и воды равны 393,5 и 285,8 кДж/моль, соответственно.
3) Какова минимальная длина волны света, который может вызвать превращение норборнадиена в квадрициклан? Постоянная Планка h = 6,6210-34 Джс, скорость света c = 3108 м/с.
- Часть I. Теоретическая химия
- Глава 1. Основные понятия и законы химии
- § 1.1. Задачи с решениями
- § 1.2. Задачи для самостоятельного решения
- 1.2.1. Задачи на расчет числа молей
- 1.2.2. Задачи на определение формул веществ
- 1.2.3. Расчеты по химическим уравнениям
- 1.2.4. Задачи на смеси
- 1.2.5. Задачи на газовые законы
- Глава 2. Строение атома и периодический закон
- § 2.1. Задачи с решениями
- § 2.2. Задачи для самостоятельного решения
- 2.2.1. Электронные конфигурации и Периодическая система
- 2.2.2. Изотопы и радиоактивные превращения
- Глава 3. Химическая связь
- § 3.1. Задачи с решениями
- § 3.2. Задачи для самостоятельного решения
- 3.2.1. Типы химической связи и их характеристики
- 3.2.2. Валентность. Степени окисления элементов. Геометрическая структура молекул.
- 3.2.3. Строение и свойства вещества
- Глава 4. Закономерности протекания химических реакций
- § 4.1. Задачи с решениями
- § 4.2. Задачи для самостоятельного решения
- 4.2.1. Энергетика химических превращений
- 4.2.2. Химическая кинетика и катализ
- 4.2.3. Обратимые и необратимые реакции. Состояние химического равновесия.
- Глава 5. Растворы электролитов и неэлектролитов
- § 5.1. Задачи с решениями
- § 5.2. Задачи для самостоятельного решения
- 5.2.1. Способы выражения концентрации растворов
- 5.2.2. Ионные реакции в растворах
- Глава 6. Окислительно-восстановительные процессы. Ряд напряжений. Электролиз растворов и расплавов.
- § 6.1. Задачи с решениями
- § 6.2. Задачи для самостоятельного решения
- 6.2.1. Окислители и восстановители
- 6.2.2. Составление уравнений овр и подбор коэффициентов
- 6.2.3. Влияние pH среды на характер протекания овр
- 6.2.4. Электрохимический ряд напряжений
- 6.2.5. Электролиз растворов и расплавов
- Часть II. Неорганическая химия
- Глава 7. Номенклатура, классификация, свойства и способы получения неорганических веществ
- § 7.1. Задачи с решениями
- § 7.2. Задачи для самостоятельного решения
- 7.2.1. Важнейшие классы неорганических соединений
- 7.2.2. Классификация химических реакций
- 7.2.3. Гидролиз солей
- Глава 8. Водород. Галогены.
- § 8.1. Задачи с решениями
- § 8.2. Задачи для самостоятельного решения
- 8.2.1. Водород
- 8.2.2. Галогены и их соединения
- Глава 9. Элементы подгруппы кислорода
- § 9.1. Задачи с решениями
- § 9.2. Задачи для самостоятельного решения
- 9.2.1. Кислород и его соединения
- 9.2.2. Сера и ее соединения
- Глава 10. Подгруппа азота и фосфора
- § 10.1. Задачи с решениями
- § 10.2. Задачи для самостоятельного решения
- 10.2.1. Азот и его соединения
- 10.2.2. Фосфор и его соединения
- Глава 11. Подгруппа углерода и кремния
- § 11.1. Задачи с решениями
- § 11.2. Задачи для самостоятельного решения
- 11.2.1. Углерод и его соединения
- 11.2.2. Кремний и его соединения
- Глава 12. Металлы главных подгрупп (щелочные, щелочноземельные, алюминий)
- § 12.1. Задачи с решениями
- § 12.2. Задачи для самостоятельного решения
- 12.2.1. Щелочные металлы
- 12.2.2. Щелочноземельные металлы
- 12.2.3. Алюминий и его соединения
- Глава 13. Главные переходные металлы
- § 13.1. Задачи с решениями
- § 13.2. Задачи для самостоятельного решения
- 13.2.1. Железо и его соединения
- 13.2.2. Медь и ее соединения
- 13.2.3. Серебро и его соединения
- 13.2.4. Хром и его соединения
- 13.2.5. Марганец и его соединения
- Часть III. Органическая химия
- Глава 14. Общая характеристика органических соединений
- § 14.1. Задачи с решениями
- § 14.2. Задачи для самостоятельного решения
- Глава 15. Предельные углеводороды
- § 15.1. Задачи с решениями
- § 15.2. Задачи для самостоятельного решения
- 15.2.1. Строение, номенклатура, изомерия
- 15.2.2. Получение
- 15.2.3. Химические свойства
- Глава 16. Углеводороды с двойной связью
- § 16.1. Задачи с решениями
- § 16.2. Задачи для самостоятельного решения
- 16.2.1. Строение, номенклатура, изомерия
- 16.2.2. Получение
- 16.2.3. Химические свойства
- Глава 17. Алкины
- § 17.1. Задачи с решениями
- § 17.2. Задачи для самостоятельного решения
- 17.2.1. Строение, номенклатура, изомерия
- 17.2.2. Получение
- 17.2.3. Химические свойства
- Глава 18. Ароматические углеводороды (арены)
- § 18.1. Задачи с решениями
- § 18.2. Задачи для самостоятельного решения
- 18.2.1. Строение, номенклатура, изомерия
- 18.2.2. Получение
- 18.2.3. Химические свойства
- Глава 19. Спирты. Фенолы
- § 19.1. Задачи с решениями
- § 19.2. Задачи для самостоятельного решения
- 19.2.1. Строение, номенклатура, изомерия
- 19.2.2. Получение
- 19.2.3. Химические свойства
- Глава 20. Альдегиды. Кетоны
- § 20.1. Задачи с решениями
- § 20.2. Задачи для самостоятельного решения
- 20.2.1. Строение, номенклатура, изомерия
- 20.2.2. Получение
- 20.2.3. Химические свойства
- Глава 21. Карбоновые кислоты и их производные
- § 21.1. Задачи с решениями
- § 21.2. Задачи для самостоятельного решения
- 21.2.1. Строение, номенклатура, изомерия карбоновых кислот
- 21.2.2. Получение карбоновых кислот
- 21.2.3. Химические свойства карбоновых кислот
- 21.2.4. Сложные эфиры
- 21.2.5. Жиры
- Глава 22. Углеводы
- § 22.1. Задачи с решениями
- § 22.2. Задачи для самостоятельного решения
- 22.2.1. Моносахариды
- Глава 23. Амины
- § 23.1. Задачи с решениями
- § 23.2. Задачи для самостоятельного решения
- 23.2.1. Строение, номенклатура, изомерия
- 23.2.2. Получение
- 23.2.3. Химические свойства
- Глава 24. Аминокислоты и пептиды
- § 24.1. Задачи с решениями
- § 24.2. Задачи для самостоятельного решения
- 24.2.1. Строение и изомерия
- 24.2.2. Получение и химические свойства
- Глава 25. Азотсодержащие гетероциклические соединения
- § 25.1. Задачи с решениями
- § 25.2. Задачи для самостоятельного решения
- 25.2.1. Гетероциклические основания
- 25.2.2. Нуклеиновые кислоты
- Часть IV варианты вступительных экзаменов
- Глава 26. Вступительные экзамены в Московском государственном университете
- Глава 27. Вступительные экзамены в Московской медицинской академии
- Глава 28. Решения избранных вариантов вступительных экзаменов