1.5.3. Оформление чертежей технологических схем
При разработке регламента производства лекарственных средств медицинской промышленностью России рекомендуется использование так называемого «флажкового» метода изображения технологического оборудования. В данном методе вся емкостная аппаратура изображается в виде многоугольников различной конфигурации в зависимости от основных условий работы установки (давление, вакуум, нагрев, охлаждение). В качестве примера приведены обозначения аппаратов, работающих при различном давлении (рис. 1.2 а-г).
Рис. 1.2. Обозначения аппаратов: работающих при атмосферном (а),
повышенном (б), пониженном (в), повышенном и пониженном (г) давлении
Однако информативность таких схем весьма ограничена. Поэтому в данном разделе приводятся условные обозначения оборудования, общепринятые на предприятиях химической промышленности, и примеры их использования при составлении отдельных фрагментов технологических схем.
Условные обозначения оборудования на технологических схемах. На чертежах технологических схем оборудование и аппаратуру принято изображать в виде условных знаков, имеющих сходство с реальным чертежом соответствующего устройства. В качестве примера приведены изображения трубопроводной арматуры, емкостной аппаратуры, фильтровального оборудования, сушилок и теплообменников (рис. 1.3 – 1.7).
Рис. 1.3. Трубопроводная арматура и механические устройства
Рис. 1.4. Емкостная аппаратура, реакторы с рубашкой, сборники, мерники
Рис. 1.5 Фильтровальное оборудование
Рис. 1.6. Сушилки
Рис. 1.7. Теплообменники
При отражении на чертеже этой и другой химической аппаратуры допускаются и иные типы условных изображений. Следует отметить то, что каждая установка должна иметь весь необходимый набор запорной арматуры – краны, вентили, сообщение с атмосферой (воздушки), смотровые фонари и т. п.
Выбор способов перемещения жидкофазных смесей и отражение их
на чертежах. При разработке технологической схемы следует обращать внимание на выбор методов перемещения жидкостей и суспензий из одной емкости в другую.
Одним из способов перемещения является перекачивание насосами. В промышленности для этих целей широко используются центробежные (лопастные) насосы. Областью применения центробежных насосов являются транспортировка больших объемов жидкостей; передача жидкостей на большие расстояния, подача их на значительную высоту; перемещение суспензий с высоким содержанием твердой фазы (специальные насосы для суспензий). Достоинства центробежных насосов:
- относительная простота конструкции по сравнению с емкостными насосами (поршневыми, плунжерными, мембранными);
- достаточно высокий КПД, относительно низкое гидравлическое сопротивление, минимальные затраты энергии на трение подвижных частей;
- длительный срок эксплуатации, легкость ремонта и обслуживания;
- возможность изготовления рабочих органов насоса из коррозионно-устойчивых, кислотоупорных материалов (ферросилид, керамика, каменное литье и т. п.).
Однако, наряду с достоинствами, имеются недостатки и ограничения по применению центробежных насосов:
- невозможность подачи жидкостей под давлением (центробежные насосы создают напор, но не давление);
- трудность точной регулировки объемной скорости потока и дозировки жидкостей;
необходимость заполнения некоторых типов насосов жидкостью перед их пуском в работу.
На рис. 1.8 изображено перекачивание жидкости из хранилища с помощью центробежного насоса:
Рис. 1.8. Емкость (хранилище) с центробежным насосом
Такие насосы устанавливают на уровне не выше минимального уровня жидкости в сосуде, из которого перемещается жидкость (рис. 1.8), либо на всасывающей линии устанавливают клапан, не позволяющий жидкости вытекать из рабочей полости насоса. Помимо выносных центробежных насосов для перекачивания агрессивных жидкостей используются специальные погружные насосы, которые изготавливаются из антикоррозионных материалов и помещаются внутри емкости.
Емкостные насосы (поршневые, плунжерные, мембранные и др.). Область применения: подача жидкостей под давлением в широких пределах; использование в качестве насосов-дозаторов для точной дозировки жидкостей и регулирования их объемной скорости.
Емкостные насосы широко используются для подачи жидкофазного сырья или полупродуктов в установки непрерывного действия.
Недостатками емкостных насосов по сравнению с центробежными являются:
- сложность конструкции и высокая стоимость насосов;
- более низкий КПД вследствие затрат энергии на трение подвижных деталей насоса и на преодоление гидравлического сопротивления;
- трудность и дороговизна изготовления насосов с высокой коррозионной устойчивостью.
Перемещение жидкости за счет разности давления. Другим методом перемещения жидкостей или суспензий является использование разности давлений в аппаратах. В качестве примера на рис. 1.9 приведен этот способ.
Рис. 1.9. Перемещение жидкофазной смеси из емкости Е1 в емкость Е2 с помощью давления или вакуума: А – воздушка, В – вакуум, Д – сжатый воздух
Положение запорной арматуры при перемещении смесей из емкости Е1 в емкость Е2 ( «О» – открыто, «З» – закрыто) показано в табл. 1.5.
Таблица 1.5
Перемещение с помощью | Обозначение запорной арматуры и ее положение | |||||
А1 | В1 | Д1 | А2 | В2 | Д2 | |
Вакуума | О | З | З | З | О | З |
давления | З | З | О | О | З | З |
Такой способ перемещения жидкофазных смесей является самым распространенным для передачи их в пределах конкретной технологической схемы или на небольшие расстояния.
Достоинства способа перемещения жидкости за счет разности давления:
- значительное сокращение или полное исключение насосного оборудования (в пределах данной схемы);
- снижение капитальных затрат на создание схемы, сокращение удельных энергозатрат на ее эксплуатацию;
- более простое решение вопросов безопасной эксплуатации оборудования в пожаровзрывоопасных производствах, в частности, использование инертных газов для перемещения легковоспламеняемых жидкостей (ЛВЖ) и других пожароопасных смесей.
Недостатки и ограничения:
- относительно небольшие расстояния транспортировки жидкостей;
- ограничение в перепаде высот при передаче жидкостей из сосудов, расположенных на различных уровнях. При использовании вакуума максимальный перепад высот обычно составляет 5 – 6 м. В случае применения давления этот перепад зависит от величины избыточного давления в системе, при этом следует иметь в виду, что давление сжатого воздуха в заводских сетях обычно составляет 0,3 МПа;
- недопустимость использования вакуума для перемещения низкокипящих жидкостей (эфир, хлороформ, сероуглерод и т. п.) из-за возможности их испарения или вскипания;
- недопустимость использования сжатого воздуха для перемещения ЛВЖ и любых веществ, способных образовывать взрывопожароопасные смеси с кислородом воздуха. В таких случаях необходимо использовать сжатый инертный газ (азот, СО2, аргон и т. п.);
- трудность или невозможность перемещения тяжелых вязких жидкостей, суспензий с высоким содержанием твердой фазы.
- Лекций по курсу «методы получения биологически активных соединений» Электронный вариант на основе учебника: в.С. Мокрушин, г.А. Вавилов
- Предисловие
- Введение
- Глава 1
- Классификация лекарственных средств
- Действие лекарственных средств на метаболизм живых организмов
- 1.2. Методы поиска новых препаратов
- 1.2.1. Основные этапы создания лекарственных препаратов, подходы к получению и отбору лекарственных средств
- 1.2.2. Разработка плана синтеза
- 1.3. Сырьевая база химико-фармацевтической промышленности
- 1.3.1. Продукты переработки твердого топлива и коксохимического производства
- 1.3.2. Продукты нефтеоргсинтеза
- 1.3.3. Лесохимическое сырье
- 1.3.4. Некоторые продукты многотоннажных производств
- 1.4. Теоретические аспекты выбора метода синтеза
- 1.4.1. Энергетические факторы
- 1.4.2. Классификация реакций
- 1.4.3. Механизм и кинетика реакций
- 1.4.4. Уравнения Гаммета, Тафта
- 1.4.5. Квантово-химические расчеты
- 1.4.6. Выбор растворителя
- Характеристики растворителей
- 1.5. Разработка технологической схемы производства
- 1.5.1. Категории и типы технологических схем
- 1.5.2. Правила составления и основные требования к технологическим схемам
- 1.5.3. Оформление чертежей технологических схем
- 1.5.4. Типовое оснащение и привязка химического реактора к конкретному производству
- Глава 2 методы получения промежуточных продуктов и синтетических лекарственных препаратов
- 2.1. Реакции электрофильного замещения
- 2.1.1. Нитрование
- 2.1.1.1. Реакции нитрования в синтезе некоторых лекарственных препаратов
- 2.1.1.2. Химические особенности реакций нитрования, реагенты, механизм
- 2.1.1.3. Нитрование арил и гетариламинов
- 2.1.1.4. Нитрование азотной кислотой
- 2.1.1.5. Технологические аспекты нитрования
- 2.1.1.6. Использование реакции нитрования для получения полупродуктов и лекарственных средств
- 2.1.1.7. Получение нитроэфиров и n-нитросоединений Так же как и при нитровании ароматических соединений, при получении нитроэфиров используют смесь азотной и серной кислот:
- 2.1.2. Нитрозирование
- 2.1.2.1. Механизм нитрозирования, реагенты
- 2.1.2.2. Особенности проведения реакции
- 2.1.2.3. Особенности структуры и свойств нитрозосоединений
- 2.1.2.4. Практика проведения реакции нитрозирования
- 2.1.2.5. Техника безопасности, экология
- 2.1.3. Сульфирование
- 2.1.3.2. Реагенты, использующиеся при проведении реакции сульфирования, механизм реакции
- 2.1.3.3. Особенности сульфирования, побочные реакции
- 2.1.3.4. Влияние температуры
- 2.1.3.5. Сульфирование бензола и его производных
- 2.1.3.6. Сульфирование анилина и его производных
- 2.1.3.8. Сульфирование хлорсульфоновой кислотой
- 2.1.3.9. Техника безопасности, экология
- 2.1.4. Сульфохлорирование
- 2.1.4.1. Химические особенности реакции
- 2.1.4.2. Технологические аспекты сульфохлорирования
- 2.1.4.3. Синтез сульфаниламидных препаратов
- 2.1.4.4. Техника безопасности, экология
- 2.1.5. Введение углеродных остатков в Ароматическое и гетероциклическое ядро
- 2.1.5.1. Реакции с-алкилирования
- Реагенты, катализаторы. Как отмечалось, реагентами могут быть алкилгалогениды, олефины и спирты:
- Механизм реакции. При взаимодействии реагента и катализатора быстро образуется карбокатион, его присутствие зафиксировано с помощью спектроскопии ямр:
- 2.1.5.2. Реакции гидроксиалкилирования
- 2.1.5.3. Реакции хлоралкилирования
- 2.1.5.4. Реакции аминоалкилирования
- 2.1.5.5. Реакции с-ацилирования
- 2.1.5.6. Реакции с-формилирования
- 2.1.5.7. Реакция карбоксилирования
- 2.1.5.8. Карбоксилирование алифатических соединений
- 2.1.5.9. Техника безопасности, экология
- 2.1.6. Галогенирование
- 2.1.6.1. Препараты, содержащие в молекуле атомы галогенов
- 2.1.6.2. Реагенты, механизм реакций галогенирования
- 2.1.6.3. Хлорирование ароматических соединений
- 2.1.6.4. Бромирование, иодирование
- 2.1.6.5. Технологические аспекты галогенирования
- 2.1.6.7. Галогенирование альдегидов, кетонов и кислот
- 2.1.6.8. Свободнорадикальное галогенирование
- Энергия стадий процесса
- 2.1.6.10. Получение галогенамидов
- 2.1.6.11. Окислительное хлорирование
- 2.1.6.12. Меры предосторожности при проведении реакций галогенирования
- 2.1.6.13. Экология
- 2.2. Реакции нуклеофильного замещения
- Реакции нуклеофильного замещения у насыщенного атома углерода
- 2.2.1.1. Типы реакций
- Реагенты для проведения реакций алкилирования
- Механизмы реакций
- Алкилирование аминов
- Селективные методы синтеза первичных аминов
- Селективные методы синтеза вторичных аминов
- Алкилирование спиртов и фенолов
- Алкилирование сн кислот
- Алкилирование гетероциклических соединений
- Техника безопасности, экология
- 2.2.2. Реакции нуклеофилов с соединениями,
- 2.2.2.1. Обзор реакций, их кинетика и механизм
- 2.2.2.2. Реакции ацилирования
- 2.2.2.3. Реакции нитрилов с нуклеофилами
- 2.2.2.4. Реакции этерификации, получение амидов и гидразидов кислот
- 2.2.2.5. Получение азометинов и гидразонов
- 2.2.2.6. Методы получения первичных аминов с помощью перегруппировок
- 2.2.2.7. Использование реакций в основном органическом синтезе
- 2.2.2.8. Технология, техника безопасности, экология
- 2.2.3. Нуклеофильное замещение в ряду ароматическИх и гетероциклических оединений
- 2.2.3.1. Нуклеофильное замещение по типу sn1
- 2.2.3.2. Ариновое замещение
- 2.2.3.3. Реакции нуклеофилов с ипсо-замещением нуклеофугных групп
- Получение полупродуктов и лекарственных препаратов. В отсутствие электроноакцепторных заместителей замещение атома хлора происходит при высокой температуре и в присутствии катализатора:
- 2.2.3.4. Нуклеофильное замещение водорода
- Еще в начале хх в. Было найдено, что реакция хинолина (изохинолина, фенантридина) с хлорангидридами кислот и цианидом натрия дает устойчивые соединения Райсерта (реакция Райсерта):
- 2.2.3.5. Замещение гидроксигрупп
- 2.2.3.6. Замещение по механизму anrorc
- 2.2.3.7. Технологические аспекты проведения реакций, техника безопасности, экология