1.4.1. Энергетические факторы
Хорошо известно, что реакции протекают в результате эффективного соударения двух частиц. Атакуемую частицу называют субстратом реакции, атакующую – реагентом. Возможность прохождения реакции с точки зрения термодинамики контролируется изменением свободной энергии системы
G = H - TS,
где H, S – энтальпийная и энтропийная составляющие. Если свободная энергия исходной системы выше свободной энергии продуктов реакции, то принципиально реакция может идти без подвода энергии извне. Однако при этом скорость реакции может быть ничтожно мала. Для того чтобы осуществить реакцию с заметной скоростью, необходимо преодолеть энергетический барьер, называемый свободной энергией активации (G ). Тогда возникает переходное состояние либо образуется промежуточное соединение, либо конечный продукт. В переходном состоянии наблюдается частичное образование связи, в промежуточном соединении и конечном продукте возникает новая ковалентная связь. Эту ситуацию можно отразить с помощью энергетической диаграммы реакции. Для некоторых реакций замещения в ряду ароматических соединений диаграмма имеет следующий вид (рис 1.1):
G Рис. 1.1. Энергетическая диаграмма реакции:
о рдината – изменение свободной энергии системы
реагентов, абсцисса – координата реакции;
1 – -комплекс субстрата и реагента;
2 – -аддукт;
3 – второй -комплекс
1 2 3
Субстрат и реагент через небольшой барьер образуют -комплекс, при преодолении более высокого энергетического барьера – -аддукт и далее через один или два барьера (два – с получением преддиссоциативного -ком-плекса) – конечный продукт. В субстрате реакции чаще всего имеется несколько атомов, на которые может быть направлена атака реагента. Для образования связи необходимо электростатическое притяжение реакционных центров, т. е. реагирующие атомы субстрата и реагента должны иметь различные по знаку заряды. Кроме того, на занятой молекулярной орбитали (ЗМО) электронодонорной молекулы необходимо иметь пару электронов, которая способна при сближении частиц взаимодействовать со свободной молекулярной орбиталью (СМО) (дыркой) электроноакцепторной молекулы.
Рассмотрим реакцию между электронодонорной молекулой S и электроноакцепторной молекулой T. ЗМО молекулы S, содержащая пару электронов, взаимодействует со СМО молекулы T, в результате чего возникает новая связь:
S + T = X
Реакция протекает при следующих условиях: на атоме s, который является реакционным центром электронодонорной молекулы S, имеется пара электронов, отрицательный или частично отрицательный заряд и относительно большой коэффициент атомной орбитали (АО) высшей занятой молекулярной орбитали (ВЗМО). На реакционном центре t электроноакцепторной молекулы T имеется положительный или частично положительный заряд и относительно высокое значение коэффициента АО низшей свободной молекулярной орбитали (НСМО). ВЗМО и НСМО называются граничными орбиталями. По общей многоэлектронной теории возмущений (метод ВМО) изменение полной энергии Еполн при частичном образовании связи между атомами s и t молекул S и T в растворителе с эффективной диэлектрической константой описывается следующим фундаментальным уравнением (уравнение Клопмана)
где qs и qt – полные заряды на атомах s и t; Rst – расстояние между атомами s и t, для которых вычисляется энергия; Csm – коэффициенты АО ЗМО – m, атома s молекулы S; Ctn – коэффициенты АО СМО – n, атома t молекулы T; – изменение резонансного интеграла при взаимодействии орбиталей атомов s и t на расстоянии Rst; Em* и En* – энергии граничных орбиталей молекул S и T.
При малом радиусе реагирующих частиц (величина Rst мала) и большом заряде на реакционных центрах второй член уравнения (ковалентный член) вносит малый вклад в изменение энергии и им можно пренебречь. В этом случае реализуется зарядовый контроль протекания реакции.
Если величина заряда на реагирующих атомах мала и разница между энергиями ВЗМО одной молекулы и НСМО другой незначительна, электростатический член уравнения имеет малое значение. Наибольший вклад в изменение энергии вносит ковалентный член уравнения – орбитальный контроль протекания реакций.
По эмпирическому принципу жестких и мягких кислот и оснований (ЖМКО) Пирсона реагенты разделяются на три группы. Жесткие реагенты имеют малый радиус и высокий заряд, мягкие – большой радиус и невысокий заряд. Для промежуточных величин радиуса и заряда реагенты занимают среднее положение. Энергетически выгодно взаимодействие жестких реагентов с жесткими, а мягких с мягкими. Анализ этой ситуации с помощью уравнения Клопмана показывает, что в первом случае наблюдается зарядовый контроль, а во втором – орбитальный. Позднее в качестве меры абсолютной жесткости () был предложен количественный параметр, который равен половине разности потенциала ионизации (I) и сродства к электрону (А). В терминах теории МО величине I соответствует ЕВЗМО, а величине А – ЕНСМО. Таким образом, величина абсолютной жесткости может быть найдена по (1.2):
= ЕВЗМО - ЕНСМО /2 (1.2)
В табл.1.2 приведены некоторые примеры кислот и оснований.
Таблица 1.2
Классификация кислот и оснований
Классификация | Кислоты | Основания |
Жесткие | H+, Li+ (35,1)*, Na+(21,1), Al+3 (45,8), BF3, AlCl3, HCl, NO2+, SO3, RSO3+, RCO+, Cl+ | HO-, F-, RO-, AcO-, RNH2, NH3, N2H4, H2O (9,5) |
Мягкие | ArN2+ (2,4), хиноны, Hg+, I+(4,3), I2, Br2 | I-, CN-, RS-, NCS-, R3C-, CO (6,0), H2 |
Промежуточные | Fe+3 (7,3), Cu+2 (8,3), Ni+2, R3C+, Ph+, Cl2 | PhNH2, N3-, Br - , NO2-, SO3- |
*В скобках приведена величина абсолютной жесткости в эВ
Из данных таблицы видно, что протон является жестким реагентом и его присоединение будет происходить к атомам, имеющим наибольший отрицательный заряд. В реакциях электрофильного замещения в ароматическом ряду участвуют жесткие реагенты, такие как NO2+, SO3, RSO3+, RCO+, Cl+. Для данных реакций характерен зарядовый контроль. Поведение реагентов в реакциях нуклеофильного замещения подробно рассмотрено в разделе 2.2. В качестве примера можно рассмотреть реакции нуклеофильного замещения в молекуле, содержащей мягкий центр – атом хлора и жесткий центр – атом фтора. С жестким основанием, каким является этилат анион, замещается фтор, с мягким реагентом, каким является CH3SNa, – атом хлора:
Приведенная классификация реагентов может быть полезна при разработке оптимального метода синтеза веществ. Ее использование позволяет выбрать субстраты, с помощью которых возможно региоселективное проведение процесса.
- Лекций по курсу «методы получения биологически активных соединений» Электронный вариант на основе учебника: в.С. Мокрушин, г.А. Вавилов
- Предисловие
- Введение
- Глава 1
- Классификация лекарственных средств
- Действие лекарственных средств на метаболизм живых организмов
- 1.2. Методы поиска новых препаратов
- 1.2.1. Основные этапы создания лекарственных препаратов, подходы к получению и отбору лекарственных средств
- 1.2.2. Разработка плана синтеза
- 1.3. Сырьевая база химико-фармацевтической промышленности
- 1.3.1. Продукты переработки твердого топлива и коксохимического производства
- 1.3.2. Продукты нефтеоргсинтеза
- 1.3.3. Лесохимическое сырье
- 1.3.4. Некоторые продукты многотоннажных производств
- 1.4. Теоретические аспекты выбора метода синтеза
- 1.4.1. Энергетические факторы
- 1.4.2. Классификация реакций
- 1.4.3. Механизм и кинетика реакций
- 1.4.4. Уравнения Гаммета, Тафта
- 1.4.5. Квантово-химические расчеты
- 1.4.6. Выбор растворителя
- Характеристики растворителей
- 1.5. Разработка технологической схемы производства
- 1.5.1. Категории и типы технологических схем
- 1.5.2. Правила составления и основные требования к технологическим схемам
- 1.5.3. Оформление чертежей технологических схем
- 1.5.4. Типовое оснащение и привязка химического реактора к конкретному производству
- Глава 2 методы получения промежуточных продуктов и синтетических лекарственных препаратов
- 2.1. Реакции электрофильного замещения
- 2.1.1. Нитрование
- 2.1.1.1. Реакции нитрования в синтезе некоторых лекарственных препаратов
- 2.1.1.2. Химические особенности реакций нитрования, реагенты, механизм
- 2.1.1.3. Нитрование арил и гетариламинов
- 2.1.1.4. Нитрование азотной кислотой
- 2.1.1.5. Технологические аспекты нитрования
- 2.1.1.6. Использование реакции нитрования для получения полупродуктов и лекарственных средств
- 2.1.1.7. Получение нитроэфиров и n-нитросоединений Так же как и при нитровании ароматических соединений, при получении нитроэфиров используют смесь азотной и серной кислот:
- 2.1.2. Нитрозирование
- 2.1.2.1. Механизм нитрозирования, реагенты
- 2.1.2.2. Особенности проведения реакции
- 2.1.2.3. Особенности структуры и свойств нитрозосоединений
- 2.1.2.4. Практика проведения реакции нитрозирования
- 2.1.2.5. Техника безопасности, экология
- 2.1.3. Сульфирование
- 2.1.3.2. Реагенты, использующиеся при проведении реакции сульфирования, механизм реакции
- 2.1.3.3. Особенности сульфирования, побочные реакции
- 2.1.3.4. Влияние температуры
- 2.1.3.5. Сульфирование бензола и его производных
- 2.1.3.6. Сульфирование анилина и его производных
- 2.1.3.8. Сульфирование хлорсульфоновой кислотой
- 2.1.3.9. Техника безопасности, экология
- 2.1.4. Сульфохлорирование
- 2.1.4.1. Химические особенности реакции
- 2.1.4.2. Технологические аспекты сульфохлорирования
- 2.1.4.3. Синтез сульфаниламидных препаратов
- 2.1.4.4. Техника безопасности, экология
- 2.1.5. Введение углеродных остатков в Ароматическое и гетероциклическое ядро
- 2.1.5.1. Реакции с-алкилирования
- Реагенты, катализаторы. Как отмечалось, реагентами могут быть алкилгалогениды, олефины и спирты:
- Механизм реакции. При взаимодействии реагента и катализатора быстро образуется карбокатион, его присутствие зафиксировано с помощью спектроскопии ямр:
- 2.1.5.2. Реакции гидроксиалкилирования
- 2.1.5.3. Реакции хлоралкилирования
- 2.1.5.4. Реакции аминоалкилирования
- 2.1.5.5. Реакции с-ацилирования
- 2.1.5.6. Реакции с-формилирования
- 2.1.5.7. Реакция карбоксилирования
- 2.1.5.8. Карбоксилирование алифатических соединений
- 2.1.5.9. Техника безопасности, экология
- 2.1.6. Галогенирование
- 2.1.6.1. Препараты, содержащие в молекуле атомы галогенов
- 2.1.6.2. Реагенты, механизм реакций галогенирования
- 2.1.6.3. Хлорирование ароматических соединений
- 2.1.6.4. Бромирование, иодирование
- 2.1.6.5. Технологические аспекты галогенирования
- 2.1.6.7. Галогенирование альдегидов, кетонов и кислот
- 2.1.6.8. Свободнорадикальное галогенирование
- Энергия стадий процесса
- 2.1.6.10. Получение галогенамидов
- 2.1.6.11. Окислительное хлорирование
- 2.1.6.12. Меры предосторожности при проведении реакций галогенирования
- 2.1.6.13. Экология
- 2.2. Реакции нуклеофильного замещения
- Реакции нуклеофильного замещения у насыщенного атома углерода
- 2.2.1.1. Типы реакций
- Реагенты для проведения реакций алкилирования
- Механизмы реакций
- Алкилирование аминов
- Селективные методы синтеза первичных аминов
- Селективные методы синтеза вторичных аминов
- Алкилирование спиртов и фенолов
- Алкилирование сн кислот
- Алкилирование гетероциклических соединений
- Техника безопасности, экология
- 2.2.2. Реакции нуклеофилов с соединениями,
- 2.2.2.1. Обзор реакций, их кинетика и механизм
- 2.2.2.2. Реакции ацилирования
- 2.2.2.3. Реакции нитрилов с нуклеофилами
- 2.2.2.4. Реакции этерификации, получение амидов и гидразидов кислот
- 2.2.2.5. Получение азометинов и гидразонов
- 2.2.2.6. Методы получения первичных аминов с помощью перегруппировок
- 2.2.2.7. Использование реакций в основном органическом синтезе
- 2.2.2.8. Технология, техника безопасности, экология
- 2.2.3. Нуклеофильное замещение в ряду ароматическИх и гетероциклических оединений
- 2.2.3.1. Нуклеофильное замещение по типу sn1
- 2.2.3.2. Ариновое замещение
- 2.2.3.3. Реакции нуклеофилов с ипсо-замещением нуклеофугных групп
- Получение полупродуктов и лекарственных препаратов. В отсутствие электроноакцепторных заместителей замещение атома хлора происходит при высокой температуре и в присутствии катализатора:
- 2.2.3.4. Нуклеофильное замещение водорода
- Еще в начале хх в. Было найдено, что реакция хинолина (изохинолина, фенантридина) с хлорангидридами кислот и цианидом натрия дает устойчивые соединения Райсерта (реакция Райсерта):
- 2.2.3.5. Замещение гидроксигрупп
- 2.2.3.6. Замещение по механизму anrorc
- 2.2.3.7. Технологические аспекты проведения реакций, техника безопасности, экология