2.1.5. Введение углеродных остатков в Ароматическое и гетероциклическое ядро
Обзор реакций. Значение реакций в синтезе препаратов. Реакции С-алкилирования и ацилирования, гидроксиалкилирования и хлорметилирования. Механизм, кинетика, реагенты и катализаторы. Получение этилбензола, кумола и полупродуктов для синтеза ЛС. Реакции С-формилирования, синтез сарколизина. Карбоксилирование, получение салициловой и п-аминосалициловой кислот. Металлорганический синтез кислот.
Для введения алкильных, функционализированных алкильных, ацильных и карбоксильных групп в ароматическое или гетероциклическое ядро с образованием углерод-углеродной связи используют ряд методов:
1. Реакции С-алкилирования и ацилирования (реакция Фриделя-Крафтса и ее модификации – Неницеску и Радзивановского):
2. Реакции гидроксиалкилирования и хлорметилирования:
3. Реакция аминоалкилирования (реакция Манниха):
4. Реакция карбоксилирования (реакция Кольбе-Шмидта):
5. Реакции С-формилирования (реакции Вильсмайера, Гаттермана и Гаттермана-Коха):
Это первая группа реакций образования С-С связи, которые объединяются общим механизмом. Электрофильной частицей, атакующей ароматическое или гетероциклическое ядро, является карбокатион. Остальные будут рассмотрены в разделах 2.2.1 – 2.2.3.
Конечно, столь разнообразные превращения нашли свое воплощение в промышленности. В первую очередь следует отметить получение кумола и этилбензола – промежуточных продуктов в синтезе фенола, ацетона и стирола (см. раздел 2.6).
Одним из наиболее крупнотоннажных продуктов в ХФП является ацетилсалициловая кислота (аспирин, анопирин, тромбо, упсарин), которую получают ацетилированием салициловой кислоты (см. раздел 2.2.2.2). Аспирин (наиболее широко употребляемое название) обладает анальгезирующим, жаропонижающим, противовоспалительным и антиагрегационным действием. Ингибирует циклооксигеназу арахидоновой кислоты, тем самым блокирует биосинтез простагландинов (противовоспалительный эффект) и тромбоксана (антиагрегационный эффект). Ограничивает энергетическое обеспечение воспалительного процесса за счет угнетения продукции АТФ. Уменьшает проницаемость капилляров. Применяют его для снятия боли, понижения температуры организма, для лечения и профилактики инфаркта миокарда, а также ишемии мозга. Салициловую кислоту получают карбоксилированием фенолята натрия.
Реакция хлорметилирования используется при получении полупродуктов в синтезе препаратов папаверин и дротаверин (но-шпа).
Реакцию С-ацилирования применяют в синтезе фенолфталеина, являющегося индикатором и лекарственным препаратом.
Наиболее крупнотоннажным производством, в котором реализуются реакции гидроксиалкилирования, является получение фенолформальдегидных смол, а также мономера эпоксидных смол дифенилолпропана.
Гидроксиалкилирование – основной процесс при получении препарата бисакодил. Фенолфталеин и бисакодил – слабительные средства, вызывающие раздражение рецепторов слизистой оболочки кишечника и, тем самым, выработку слизи, которая разжижает каловые массы.
Эти же реакции используют при получении триарилметановых красителей, таких как фиолетовый кристаллический, малахитовый и бриллиантовый зеленый (последний обладает бактерицидным действием – «зеленка»), а также фуксина. Реакцией С-ацилирования получают антрахинон и ксантеновые красители, например флюоресцеин. Процесс С-формилирования положен в основу метода синтеза противоопухолевого препарата сарколизина.
Таким образом, процессы такого типа реакций электрофильного замещения имеют большое значение как в производстве известных продуктов, так и при разработке методов получения новых препаратов.
- Лекций по курсу «методы получения биологически активных соединений» Электронный вариант на основе учебника: в.С. Мокрушин, г.А. Вавилов
- Предисловие
- Введение
- Глава 1
- Классификация лекарственных средств
- Действие лекарственных средств на метаболизм живых организмов
- 1.2. Методы поиска новых препаратов
- 1.2.1. Основные этапы создания лекарственных препаратов, подходы к получению и отбору лекарственных средств
- 1.2.2. Разработка плана синтеза
- 1.3. Сырьевая база химико-фармацевтической промышленности
- 1.3.1. Продукты переработки твердого топлива и коксохимического производства
- 1.3.2. Продукты нефтеоргсинтеза
- 1.3.3. Лесохимическое сырье
- 1.3.4. Некоторые продукты многотоннажных производств
- 1.4. Теоретические аспекты выбора метода синтеза
- 1.4.1. Энергетические факторы
- 1.4.2. Классификация реакций
- 1.4.3. Механизм и кинетика реакций
- 1.4.4. Уравнения Гаммета, Тафта
- 1.4.5. Квантово-химические расчеты
- 1.4.6. Выбор растворителя
- Характеристики растворителей
- 1.5. Разработка технологической схемы производства
- 1.5.1. Категории и типы технологических схем
- 1.5.2. Правила составления и основные требования к технологическим схемам
- 1.5.3. Оформление чертежей технологических схем
- 1.5.4. Типовое оснащение и привязка химического реактора к конкретному производству
- Глава 2 методы получения промежуточных продуктов и синтетических лекарственных препаратов
- 2.1. Реакции электрофильного замещения
- 2.1.1. Нитрование
- 2.1.1.1. Реакции нитрования в синтезе некоторых лекарственных препаратов
- 2.1.1.2. Химические особенности реакций нитрования, реагенты, механизм
- 2.1.1.3. Нитрование арил и гетариламинов
- 2.1.1.4. Нитрование азотной кислотой
- 2.1.1.5. Технологические аспекты нитрования
- 2.1.1.6. Использование реакции нитрования для получения полупродуктов и лекарственных средств
- 2.1.1.7. Получение нитроэфиров и n-нитросоединений Так же как и при нитровании ароматических соединений, при получении нитроэфиров используют смесь азотной и серной кислот:
- 2.1.2. Нитрозирование
- 2.1.2.1. Механизм нитрозирования, реагенты
- 2.1.2.2. Особенности проведения реакции
- 2.1.2.3. Особенности структуры и свойств нитрозосоединений
- 2.1.2.4. Практика проведения реакции нитрозирования
- 2.1.2.5. Техника безопасности, экология
- 2.1.3. Сульфирование
- 2.1.3.2. Реагенты, использующиеся при проведении реакции сульфирования, механизм реакции
- 2.1.3.3. Особенности сульфирования, побочные реакции
- 2.1.3.4. Влияние температуры
- 2.1.3.5. Сульфирование бензола и его производных
- 2.1.3.6. Сульфирование анилина и его производных
- 2.1.3.8. Сульфирование хлорсульфоновой кислотой
- 2.1.3.9. Техника безопасности, экология
- 2.1.4. Сульфохлорирование
- 2.1.4.1. Химические особенности реакции
- 2.1.4.2. Технологические аспекты сульфохлорирования
- 2.1.4.3. Синтез сульфаниламидных препаратов
- 2.1.4.4. Техника безопасности, экология
- 2.1.5. Введение углеродных остатков в Ароматическое и гетероциклическое ядро
- 2.1.5.1. Реакции с-алкилирования
- Реагенты, катализаторы. Как отмечалось, реагентами могут быть алкилгалогениды, олефины и спирты:
- Механизм реакции. При взаимодействии реагента и катализатора быстро образуется карбокатион, его присутствие зафиксировано с помощью спектроскопии ямр:
- 2.1.5.2. Реакции гидроксиалкилирования
- 2.1.5.3. Реакции хлоралкилирования
- 2.1.5.4. Реакции аминоалкилирования
- 2.1.5.5. Реакции с-ацилирования
- 2.1.5.6. Реакции с-формилирования
- 2.1.5.7. Реакция карбоксилирования
- 2.1.5.8. Карбоксилирование алифатических соединений
- 2.1.5.9. Техника безопасности, экология
- 2.1.6. Галогенирование
- 2.1.6.1. Препараты, содержащие в молекуле атомы галогенов
- 2.1.6.2. Реагенты, механизм реакций галогенирования
- 2.1.6.3. Хлорирование ароматических соединений
- 2.1.6.4. Бромирование, иодирование
- 2.1.6.5. Технологические аспекты галогенирования
- 2.1.6.7. Галогенирование альдегидов, кетонов и кислот
- 2.1.6.8. Свободнорадикальное галогенирование
- Энергия стадий процесса
- 2.1.6.10. Получение галогенамидов
- 2.1.6.11. Окислительное хлорирование
- 2.1.6.12. Меры предосторожности при проведении реакций галогенирования
- 2.1.6.13. Экология
- 2.2. Реакции нуклеофильного замещения
- Реакции нуклеофильного замещения у насыщенного атома углерода
- 2.2.1.1. Типы реакций
- Реагенты для проведения реакций алкилирования
- Механизмы реакций
- Алкилирование аминов
- Селективные методы синтеза первичных аминов
- Селективные методы синтеза вторичных аминов
- Алкилирование спиртов и фенолов
- Алкилирование сн кислот
- Алкилирование гетероциклических соединений
- Техника безопасности, экология
- 2.2.2. Реакции нуклеофилов с соединениями,
- 2.2.2.1. Обзор реакций, их кинетика и механизм
- 2.2.2.2. Реакции ацилирования
- 2.2.2.3. Реакции нитрилов с нуклеофилами
- 2.2.2.4. Реакции этерификации, получение амидов и гидразидов кислот
- 2.2.2.5. Получение азометинов и гидразонов
- 2.2.2.6. Методы получения первичных аминов с помощью перегруппировок
- 2.2.2.7. Использование реакций в основном органическом синтезе
- 2.2.2.8. Технология, техника безопасности, экология
- 2.2.3. Нуклеофильное замещение в ряду ароматическИх и гетероциклических оединений
- 2.2.3.1. Нуклеофильное замещение по типу sn1
- 2.2.3.2. Ариновое замещение
- 2.2.3.3. Реакции нуклеофилов с ипсо-замещением нуклеофугных групп
- Получение полупродуктов и лекарственных препаратов. В отсутствие электроноакцепторных заместителей замещение атома хлора происходит при высокой температуре и в присутствии катализатора:
- 2.2.3.4. Нуклеофильное замещение водорода
- Еще в начале хх в. Было найдено, что реакция хинолина (изохинолина, фенантридина) с хлорангидридами кислот и цианидом натрия дает устойчивые соединения Райсерта (реакция Райсерта):
- 2.2.3.5. Замещение гидроксигрупп
- 2.2.3.6. Замещение по механизму anrorc
- 2.2.3.7. Технологические аспекты проведения реакций, техника безопасности, экология