3.2. Сырьевая и энергетическая подсистема хтс
Сырьевую основу соответствующих отраслей химических производств составляют:
в неорганической ХТ
1. Атмосферный азот и в очень ограниченной степени натриевая селитра, запасы которой (Чили, Южная Африка) быстро истощаются;
2. Водород. В промышленности производится:
- конверсией метана
СН4 + 2Н2О(пар) → СО2 + 4Н2
- неполным окислением метана, который является комбинацией следующих реакций
с последующим взаимодействием СО с водяным паром
- конверсией твёрдого углеродного топлива
- электролиз воды или водных растворов NaCl.
3. Кислород или воздух. Если необходимо иметь чистый кислород, то его сжижают при высоких давлениях и пониженной температуре, а затем подвергают фракционной перегонке;
4. Источником получения серной кислоты и других продуктов на её основе является элементарная сера, пирит FeS2 и сульфиды цветных металлов;
5. Источником получения фосфорной кислоты и фосфат-содержащих удобрений являются фосфатные руды: апатиты и фосфориты. В этих рудах фосфор находится в нерастворимой форме, главным образом в виде фторапатита Ca5F(PO4)3 и трикальцийфосфата Ca3(PO4)2;
Апатит – минерал, входящий в состав изверженных пород. В России на Кольском полуострове имеются крупнейшие залежи апатитонефелиновой руды. Нефелин (K,Na)2OAl2O32SiO22H2O – сырьё алюминиевой промышленности. Апатитонефелиновую породу, содержащую до 70% апатита и до 25% нефелина разделяют флотацией на апатитовый концентрат, в состав которого входит до 40% Р2О5 и нефелиновую фракцию, которая после повторного обогащения содержит до 30% Al2O3.
Фосфориты – породы осадочного происхождения. Содержание Р2О5 в фосфоритах колеблется от 20 до 30%.
6. Первичным сырьём для производства органических веществ являются природный газ, нефть, каменный уголь, в меньшей степени горючие сланцы и торф.
Традиционные способы их первичной переработки – пиролиз (нагрев без доступа воздуха). Последние годы всё большее значение приобретает синтез-газ (СО и 3Н2), получаемый из всех перечисленных видов сырья путём парокислородной конверсии. Это особенно важно для твёрдых горючих ископаемых, залежей которых должно хватить на несколько сотен лет. Синтез-газ является основой для получения небольшой группы базовых продуктов органического синтеза, которые в сырьевом балансе промышленных органических продуктов составляют 90%. Сюда относятся этилен, пропилен, 1,3-бутадиен, бензол, толуол и ксилолы.
7. Источником получения металлов в технически чистом виде являются природные минералы, содержащие, как правило, часть пустой породы. Минералы руд представляют в основном оксиды и сульфиды некоторых металлов (Fe3O4, Fe2O3, Cu2S, CuS, FeCuS2, ZnS и др.), содержащие оксиды соединений, составляющих пустую породу. В чёрной металлургии к ним относятся Al2O3, SiO2, CrO, MgO и т.п. В то же время некоторые из этих оксидов могут служить рудами цветных металлов (например, Al2O3 в производстве алюминия). Обобщая данные по минералам руд их можно подразделить на оксидные, сульфидные и самородные. Руды, в состав которых входят соединения разных металлов называют полиметаллическими. Типичными примерами таких руд являются медно-никелевые (содержат сульфиды свинца и цинка), свинцово-молибденовые и др.
Химическая промышленность и смежные с ней отрасли основанные на химических превращениях (нефтепереработка, нефтехимия, металлургия, целлюлозно-бумажная промышленность) являются крупнейшими потребителями энергии. Химическая промышленность и нефтеперерабатывающие производства потребляют около 20% от энергопотребления всей промышленности. По расходу тепловой энергии химическая промышленность занимает второе место среди других отраслей хозяйственной деятельности, а по расходу электроэнергии – третье.
Химические процессы подразделяются на экзо- и эндотермические. Проведение эндотермических процессов требует дополнительного подвода тепла из вне и поэтому, как правило, характеризуется гораздо большим энергопотреблением. В экзотермических процессах такого подвода обычно не требуется, так как тепло реакции может быть использовано для поддержания необходимого температурного режима. В высокоэкзотермических процессах протекающих при высоких температурах (400-6000С) часть избыточного тепла реакции может быть преобразовано в механическую энергию для транспортировки реагентов или создания повышенных давлений. Это даёт существенную экономию энергии на производстве. Помимо затрат или экономии энергии, связанной с эндо- и экзотермичностью реакций реализация любого химического производства связана с расходом энергии на проведение вспомогательных операций, таких как подготовка и транспортировка сырья, отвод продуктов, физические операции дробления, фильтрации, перемешивания, дистилляции и др.
В химической технологии используются почти все виды энергии: электрическая, тепловая, ядерная, химическая, световая и др. Наиболее широко используются тепловая и электрическая энергия.
3.3 Химические реакторы – основные элементы ХТС. Типы классификации химических реакторов. Классификация химических реакторов по гидродинамической обстановке, условиям теплообмена, фазовому составу реакционной массы, способу организации процессов, характеру изменения параметров процессов во времени, конструктивным характеристикам. Изотермические и неизотермические процессы в химических реакторах
Химические реактора для проведения различных процессов отличаются друг от друга конструктивными особенностями, размерами, внешним видом. Однако, несмотря на существующие различия, можно видеть общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор математического расчета.
Наиболее употребимы следующие признаки классификации химических реакторов и режимов их работы: 1) режим движения реакционной среды (гидродинамическая обстановка в реакторе); 2) условия теплообмена в реакторе; 3) фазовый состав реакционной смеси; 4) способ организации процесса; 5) характер изменения параметров процесса во времени; 6) конструктивные характеристики.
Yandex.RTB R-A-252273-3- Содержание
- 1. Введение.
- 1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- Требования к химическим производствам
- Компоненты химического производства
- Разделение на две твердые фазы:
- Разделение жидкости и твердого вещества:
- 1.2 Промышленный катализ
- Основные положения теории катализа.
- 1.3. Сырьевая база химической промышленности.
- Классификация сырья
- Характеристика минерального сырья
- Химическое сырье
- Растительное и животное сырье
- Характеристика разработок минерального сырья
- Качество сырья и методы его обработки
- Способы сортировки:
- Способы обогащения:
- Сырьевая база химических производств
- 1.4 Энергетическая база химических производств
- 1.5 Критерии оценки эффективности производства
- 1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- 1.5.2. Балансы производства
- 1. Материальный баланс
- 2. Энергетический (тепловой) баланс
- 3. Экономический баланс
- 1.5.3. Технологические параметры химико-технологических процессов.
- 1.6.Принципы создания ресурсосберегающих технологий
- 2. Теоретические основы химической технологии
- 2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- 2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- Молекулярная диффузия. Первый закон Фика
- Турбулентная диффузия
- Уравнение массоотдачи
- Уравнение массопередачи
- Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- Подобие массобменных процессов
- 3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- 3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- Методология исследование химико-технологических систем.
- 3.2. Сырьевая и энергетическая подсистема хтс
- 1. Классификация химических реакторов по гидродинамической обстановке.
- 2. Классификация химических реакторов по условиям теплообмена.
- 3. Классификация химических реакторов по фазовому составу реакционной массы.
- 4. Классификация по способу организации процесса.
- 5. Классификация по характеру изменения параметров процесса во времени.
- 6. Классификация по конструктивным характеристикам.
- 3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- Реакторы для гетерогенных процессов с твердой фазой.
- Реакторы для гетерогенно-каталитических процессов.
- 4. Основные математические модели процессов в химических реакторах
- 4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- 4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- Каскад реакторов смешения.
- Влияние степени конверсии.
- Влияние температуры.
- 5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- 5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- Оптимизация степени конверсии.
- 7. Важнейшие промышленные химические производства
- 7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- Синтез аммиака
- Сырье для синтеза аммиака.
- Технология процесса.
- Основные направления в развитии производства аммиака.
- 7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- Физико-химические основы процесса.
- Контактное окисление аммиака.
- Обоснование роли параметров и их выбор.
- Окисление оксида азота (II) до диоксида.
- Абсорбция диоксида азота.
- Технология процесса.
- 7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- Классификация минеральных удобрений.
- 7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- Производство нитрата аммония.
- 7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- Функциональная схема производства эфк.
- Сернокислотное разложение апатита.
- 7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- Производство простого суперфосфата.
- Производство двойного суперфосфата
- Азотнокислое разложение фосфатов. Получение сложных удобрений
- Обжиг серосодержащего сырья.
- Обоснование роли параметров и их выбор.
- Сжигание серы.
- Окисление диоксида серы.
- Обоснование роли параметров и их выбор.
- Технология контактного окисления so2.
- Абсорбция триоксида серы.
- Перспективы развития сернокислотных производств.
- 7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- Основные направления применения электрохимических производств
- Электролиз раствора хлорида натрия
- Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- Электролиз раствора хлорида натрия с ртутным катодом
- 7.6. Промышленный органический синтез
- Первичная переработка нефти.
- Каталитический риформинг углеводородов.
- 7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- 7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- Окисление изопропилбензола (кумола)
- Технологическая схема получения фенола и ацетона кумольным способом.
- 7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- 7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- 7.6.5.2. Производство пищевых белков
- 8. Химико-технологические методы защиты окружающей среды
- 8.1. Утилизация и обезвреживание твердых отходов
- 8.2. Утилизация и обезвреживание жидких отходов
- 8.3. Обезвреживание газообразных отходов