Технологическая схема получения фенола и ацетона кумольным способом.
Рис. 2. Технологическая схема кумольного метода получения фенола и ацетона:
1 – реакционная колонна; 2 – холодильник; З – промыватель-сепаратор; 4 – теплообменник; 5 – сборник; 6, 8-11 – ректификационные колонны; 7 – узел кислотного разложения гидропероксида; 12 – сепаратор; 13 – дефлегматоры; 14 – кипятильники; 15 – дроссельный вентиль; 16 – насос.
Производство фенола и ацетона кумольным методом включает стадии получения изопропилбензола, синтез гидропероксида изопропилбензола и его кислотного разложения в фенол и ацетон.
Технологическая схема двух последних стадий изображена на рис. 2. Окисление проводится в тарельчатой реакционной колонне (19) снабженной холодильниками: при их помощи поддерживают температуру жидкости от 120°С на верхней тарелке до 105°С в кубе. Воздух, предварительно очищенный от загрязнений и механических примесей и подогретый, подают в нижнюю часть колонны под давлением 0,4 МПа. Свежий и оборотный изопропилбензол (ИПБ), к которому добавлен гидропероксид (ГП), инициирующий начальную стадию окисления, из сборника (5) подают в теплообменник (4), а оттуда на верхнюю тарелку реактора. Воздух движется противотоком к жидкости, барботируя через нее на тарелках колонны. При этом он увлекает с собой пары изопропилбензола и летучих побочных продуктов (муравьиная кислота, формальдегид), которые конденсируются в холодильнике (2). Оставшийся воздух выводят в атмосферу, а конденсат отмывают от муравьиной кислоты водным раствором щелочи в промывателе-сепараторе (3). Углеводородный слой сливают в сборник (5), а водный слой рециркулируют на промывку, сбрасывая в конечном счете в канализацию.
Оксидат из нижней части колонны (7) содержит до 30 % гидропероксида. Он отдает свое тепло изопропилбензолу в теплообменнике (4), дросселируется до остаточного давления 4 кПа и поступает на вакуум-ректификацию для концентрирования гидропероксида. Отгонку изопропилбензола ведут в насадочной ректификационной колонне (6) непрерывного действия, снабженной конденсатором-дефлегматором. Применение вакуума обусловлено термической нестабильностью гидропероксида. Часть конденсированного изопропилбензола возвращают из конденсатора-дефлегматора на орошение колонны (6), а остальное количество выводят в сепаратор (3), промывают щелочью, и снова направляют на окисление. Кубовая жидкость из колонны (6) содержит 70-75 % гидропероксида, а также побочные продукты окисления и остатки изопропилбензола. Путем дополнительной вакуум-ректификации (на схеме не изображена) при остаточном давлении 665 Па повышают концентрацию гидропероксида до 88-92%. Следующую стадию (кислотное разложение гидропероксида) осуществляют в узле (7) одним из двух описанных выше методов.
Заключительная стадия состоит в ректификации, которую ведут в разной последовательности. Чаще всего вначале при обычном давлении в колонне (8) отгоняют ацетон, затем при пониженном давлении отделяют в колонне (9) смесь высококипящих веществ (фенольная смола), остающуюся в кубе, от более летучих продуктов, включая фенол. От этой фракции в колонне (10) отгоняют -метилстирол и остатки изопропилбензола (углеводородная фракция) и в колонне (11) – фенол, оставляй в кубе дополнительное количество фенольной смолы.
На некоторых установках углеводородную фракцию гидрируют и возвращают на окисление. Это предотвращает ингибирующее действие -метилстирола и позволяет вообще не концентрировать гидропероксид перед разложением или проводить только его «укрепление». Предложен ряд методов утилизации фенольной смолы, в том числе пиролиз с получением дополнительного количества фенола.
Yandex.RTB R-A-252273-3- Содержание
- 1. Введение.
- 1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- Требования к химическим производствам
- Компоненты химического производства
- Разделение на две твердые фазы:
- Разделение жидкости и твердого вещества:
- 1.2 Промышленный катализ
- Основные положения теории катализа.
- 1.3. Сырьевая база химической промышленности.
- Классификация сырья
- Характеристика минерального сырья
- Химическое сырье
- Растительное и животное сырье
- Характеристика разработок минерального сырья
- Качество сырья и методы его обработки
- Способы сортировки:
- Способы обогащения:
- Сырьевая база химических производств
- 1.4 Энергетическая база химических производств
- 1.5 Критерии оценки эффективности производства
- 1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- 1.5.2. Балансы производства
- 1. Материальный баланс
- 2. Энергетический (тепловой) баланс
- 3. Экономический баланс
- 1.5.3. Технологические параметры химико-технологических процессов.
- 1.6.Принципы создания ресурсосберегающих технологий
- 2. Теоретические основы химической технологии
- 2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- 2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- Молекулярная диффузия. Первый закон Фика
- Турбулентная диффузия
- Уравнение массоотдачи
- Уравнение массопередачи
- Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- Подобие массобменных процессов
- 3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- 3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- Методология исследование химико-технологических систем.
- 3.2. Сырьевая и энергетическая подсистема хтс
- 1. Классификация химических реакторов по гидродинамической обстановке.
- 2. Классификация химических реакторов по условиям теплообмена.
- 3. Классификация химических реакторов по фазовому составу реакционной массы.
- 4. Классификация по способу организации процесса.
- 5. Классификация по характеру изменения параметров процесса во времени.
- 6. Классификация по конструктивным характеристикам.
- 3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- Реакторы для гетерогенных процессов с твердой фазой.
- Реакторы для гетерогенно-каталитических процессов.
- 4. Основные математические модели процессов в химических реакторах
- 4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- 4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- Каскад реакторов смешения.
- Влияние степени конверсии.
- Влияние температуры.
- 5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- 5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- Оптимизация степени конверсии.
- 7. Важнейшие промышленные химические производства
- 7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- Синтез аммиака
- Сырье для синтеза аммиака.
- Технология процесса.
- Основные направления в развитии производства аммиака.
- 7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- Физико-химические основы процесса.
- Контактное окисление аммиака.
- Обоснование роли параметров и их выбор.
- Окисление оксида азота (II) до диоксида.
- Абсорбция диоксида азота.
- Технология процесса.
- 7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- Классификация минеральных удобрений.
- 7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- Производство нитрата аммония.
- 7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- Функциональная схема производства эфк.
- Сернокислотное разложение апатита.
- 7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- Производство простого суперфосфата.
- Производство двойного суперфосфата
- Азотнокислое разложение фосфатов. Получение сложных удобрений
- Обжиг серосодержащего сырья.
- Обоснование роли параметров и их выбор.
- Сжигание серы.
- Окисление диоксида серы.
- Обоснование роли параметров и их выбор.
- Технология контактного окисления so2.
- Абсорбция триоксида серы.
- Перспективы развития сернокислотных производств.
- 7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- Основные направления применения электрохимических производств
- Электролиз раствора хлорида натрия
- Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- Электролиз раствора хлорида натрия с ртутным катодом
- 7.6. Промышленный органический синтез
- Первичная переработка нефти.
- Каталитический риформинг углеводородов.
- 7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- 7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- Окисление изопропилбензола (кумола)
- Технологическая схема получения фенола и ацетона кумольным способом.
- 7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- 7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- 7.6.5.2. Производство пищевых белков
- 8. Химико-технологические методы защиты окружающей среды
- 8.1. Утилизация и обезвреживание твердых отходов
- 8.2. Утилизация и обезвреживание жидких отходов
- 8.3. Обезвреживание газообразных отходов