Обоснование роли параметров и их выбор.
Температура. Термическое разложение пирита начинается уже при температурах около 200С и одновременно воспламеняется сера. При температурах выше 680С интенсивно протекают все три реакции.
В промышленности обжиг ведут при 850 – 900С, когда общая скорость процесса лимитируется массопереносом окислителя (кислорода) к поверхности пирита и продуктов разложения в газовую фазу. В общем виде движущая сила этого процесса может быть выражена уравнением
(1)
Из этого уравнения видно, что факторами увеличения производительности процесса являются интенсификация массопереноса ( ), увеличение поверхности контакта фаз (F) и концентрации реагентов. Коэффициент массопереноса может быть увеличен повышением температуры, поверхность контакта фаз существенно возрастает с увеличением степени дисперсности твердого материала, а высокие концентрации реагентов обеспечиваются использованием обогащенного пирита и увеличением содержания кислорода в окислителе. Следует, однако, иметь в виду, что чрезмерное повышение температуры способствует размягчению и слипанию частиц твердого сырья, а применение концентрированных реагентов удорожает их стоимость и приводит к чрезмерному росту температуры в условиях автотермического режима. Это обусловливает выбор оптимальной температуры, сочетающей достаточную производительность процесса и использование сырья с соответствующим содержанием активных компонентов при минимуме процессов агломерации твердого материала. На практике процесс проводят при температуре 850 – 900С.
Давление. В соответствии с уравнением (1) давление является фактором скорости процесса, однако его рост может привести в условиях автотермического режима к чрезмерному увеличению температуры и слипанию частиц твердого материала. Кроме того, увеличение давления приводит к увеличению расходов на компремирование. Поскольку реакция обжига в условиях указанных температур протекает достаточно гладко, то предпочитают работать при атмосферном давлении.
Соотношение воздух-колчедан поддерживается на уровне, обеспечивающем избыток кислорода по сравнению с его стехиометрическим количеством, с целью достижения высоких степеней обжига, однако этот избыток не должен быть чрезмерным, т.к. при значительных избытках рост степени извлечения серы из колчедана перекрывается значительным разбавлением газов обжига и понижением концентрации SO2 в них, что отрицательно влияет на последующий процесс окисления SO2 в SO3.
Ранее доминирующим типом реактора был многополочный реактор, снабженный скребками для выравнивания слоя на каждой полке и организации транспорта твердой фазы с верхних полок на нижние (см. типы реакторов для гетерогенных реакций с участием твердой фазы).
В таком реакторе степень дисперсности колчедана невелика, что существенно ограничивает производительность реактора. Кроме того, в таком реакторе движущиеся скребки в высокотемпературной зоне усложняют его конструкцию, создается неоднородный температурный режим по полкам, в нем трудно организовать отвод тепла из зоны реакции. Трудности теплосъема не позволяют получить обжиговый газ с концентрацией SO2 более 8 – 9%. Основное ограничение – невозможность использования мелких частиц, в то время как для гетерогенного процесса основной способ ускорения реакции – дробление частиц. По этой причине более перспективными являются аппараты к «кипящем слоем» твердых частиц. Их степень дисперсности позволяет на порядок ускорить процесс.
Пылевидный колчедан подается через питатель в реактор. Окислитель (воздух) подается снизу через распределительную решетку со скоростью, достаточной для взвешивания твердых частиц. Их витание в слое предотвращает слипание и способствует хорошему контакту с газом, выравнивает температурный режим по всему слою, обеспечивает подвижность твердого материала и его переток в выходной патрубок для вывода огарка из реактора. В слое подвижных частиц можно расположить теплообменные элементы. Благодаря увеличению глубины обжига содержание SO2 в обжиговом газе увеличивается до 13 – 15%. Основной недостаток печей кипящего слоя – повышенная запыленность обжигового газа из-за механической эрозии подвижных твердых частиц. Это требует более тщательной очистки газа от пыли в циклоне и электрофильтре.
Yandex.RTB R-A-252273-3
- Содержание
- 1. Введение.
- 1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- Требования к химическим производствам
- Компоненты химического производства
- Разделение на две твердые фазы:
- Разделение жидкости и твердого вещества:
- 1.2 Промышленный катализ
- Основные положения теории катализа.
- 1.3. Сырьевая база химической промышленности.
- Классификация сырья
- Характеристика минерального сырья
- Химическое сырье
- Растительное и животное сырье
- Характеристика разработок минерального сырья
- Качество сырья и методы его обработки
- Способы сортировки:
- Способы обогащения:
- Сырьевая база химических производств
- 1.4 Энергетическая база химических производств
- 1.5 Критерии оценки эффективности производства
- 1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- 1.5.2. Балансы производства
- 1. Материальный баланс
- 2. Энергетический (тепловой) баланс
- 3. Экономический баланс
- 1.5.3. Технологические параметры химико-технологических процессов.
- 1.6.Принципы создания ресурсосберегающих технологий
- 2. Теоретические основы химической технологии
- 2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- 2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- Молекулярная диффузия. Первый закон Фика
- Турбулентная диффузия
- Уравнение массоотдачи
- Уравнение массопередачи
- Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- Подобие массобменных процессов
- 3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- 3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- Методология исследование химико-технологических систем.
- 3.2. Сырьевая и энергетическая подсистема хтс
- 1. Классификация химических реакторов по гидродинамической обстановке.
- 2. Классификация химических реакторов по условиям теплообмена.
- 3. Классификация химических реакторов по фазовому составу реакционной массы.
- 4. Классификация по способу организации процесса.
- 5. Классификация по характеру изменения параметров процесса во времени.
- 6. Классификация по конструктивным характеристикам.
- 3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- Реакторы для гетерогенных процессов с твердой фазой.
- Реакторы для гетерогенно-каталитических процессов.
- 4. Основные математические модели процессов в химических реакторах
- 4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- 4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- Каскад реакторов смешения.
- Влияние степени конверсии.
- Влияние температуры.
- 5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- 5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- Оптимизация степени конверсии.
- 7. Важнейшие промышленные химические производства
- 7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- Синтез аммиака
- Сырье для синтеза аммиака.
- Технология процесса.
- Основные направления в развитии производства аммиака.
- 7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- Физико-химические основы процесса.
- Контактное окисление аммиака.
- Обоснование роли параметров и их выбор.
- Окисление оксида азота (II) до диоксида.
- Абсорбция диоксида азота.
- Технология процесса.
- 7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- Классификация минеральных удобрений.
- 7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- Производство нитрата аммония.
- 7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- Функциональная схема производства эфк.
- Сернокислотное разложение апатита.
- 7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- Производство простого суперфосфата.
- Производство двойного суперфосфата
- Азотнокислое разложение фосфатов. Получение сложных удобрений
- Обжиг серосодержащего сырья.
- Обоснование роли параметров и их выбор.
- Сжигание серы.
- Окисление диоксида серы.
- Обоснование роли параметров и их выбор.
- Технология контактного окисления so2.
- Абсорбция триоксида серы.
- Перспективы развития сернокислотных производств.
- 7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- Основные направления применения электрохимических производств
- Электролиз раствора хлорида натрия
- Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- Электролиз раствора хлорида натрия с ртутным катодом
- 7.6. Промышленный органический синтез
- Первичная переработка нефти.
- Каталитический риформинг углеводородов.
- 7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- 7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- Окисление изопропилбензола (кумола)
- Технологическая схема получения фенола и ацетона кумольным способом.
- 7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- 7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- 7.6.5.2. Производство пищевых белков
- 8. Химико-технологические методы защиты окружающей среды
- 8.1. Утилизация и обезвреживание твердых отходов
- 8.2. Утилизация и обезвреживание жидких отходов
- 8.3. Обезвреживание газообразных отходов