4.2. Химические свойства
α,β-Ненасыщенные карбоновые кислоты образуют функциональные производные по карбоксильной группе точно так же, как и насыщенные карбоновые кислоты.
Наличие двойной связи предполагает протекание реакций присоединения, характерных для алкенов, однако электрофильное присоединение затруднено и требует более жестких условий, поскольку двойная связь дезактивирована сопряженной с ней электроноакцепторной карбоксильной группой (–I- и –М-эффекты). Присоединение осуществляется формально против правила Марковникова. Так, например, взаимодействие метакриловой кислоты с хлороводородом приводит к 2-метил-3-хлорпропановой кислоте.
α,β-Ненасыщенные кислоты являются прекрасными диенофилами – партнерами сопряженных диенов – в реакции диеновой конденсации Дильса-Альдера. Например, при нагревании метилакрилата с 1,3-бутадиеном образуется метиловый эфир 3-циклогексенкарбоновой кислоты.
Промышленное использование α,β-ненасыщенных карбоновых кислот и их производных обусловлено их способностью к полимеризации. Полимеры и сополимеры на основе акрилатов и метакрилатов представляют собой органические стекла, а из полимеров на основе акрилонитрила изготовляют синтетические волокна, имитирующие различные природные волокна, в том числе и шерсть. Полимеризация производных α,β-ненасыщенных карбоновых кислот происходит под действием радикалов (радикальная полимеризация) или металлорганических соединений в качестве катализаторов (анионная полимеризация).
Полиметилметакрилат
- Краткий курс
- Карбоновые кислоты и их производные
- 1. Способы получения карбоновых кислот
- 1.1. Реакции окисления
- 1.2. Синтез карбоновых кислот из галогенопроизводных
- 1.2.1.Синтез карбоновых кислот через нитрилы
- 1.2.2. Синтез карбоновых кислот реакцией Гриньяра
- 1.3. Гидролиз производных карбоновых кислот
- 2. Химические свойства карбоновых кислот
- 2.1. Кислотно-основные свойства
- 2.2. Декарбоксилирование карбоновых кислот
- 2.3. Галогенирование карбоновых кислот
- 3. Производные карбоновых кислот
- 3.1. Реакции нуклеофильного замещения: механизм и реакционная способность
- 3.2. Сложные эфиры
- 3.1.1. Способы получения
- 3.1.2. Химические свойства
- 3.3. Галогенангидриды
- 3.4. Ангидриды
- 3.5. Амиды
- 3.5.1. Способы получения
- 3.5.2. Химические свойства
- 3.6. Нитрилы
- 4. Α,β-Ненасыщенные карбоновые кислоты
- 4.1. Способы получения
- 4.2. Химические свойства
- 5. Дикарбоновые кислоты
- 5.1. Способы получения
- 5.2. Свойства дикарбоновых кислот
- 5.3. Малоновый эфир
- 6. Задачи и упражнения
- 1. Способы получения
- 1.1. Восстановление азотсодержащих соединений
- 1.2. Алкилирование аммиака и аминов
- 2. Химические свойства
- 2.1. Основность аминов
- 2.2. Амины как нуклеофилы
- 2.2.1. Алкилирование и ацилирование аминов
- 2.2.2. Взаимодействие первичных и вторичных аминов с альдегидами и кетонами
- 2.2.3. Взаимодействие аминов с азотистой кислотой
- 2.3. Особенности химического поведения ароматических аминов
- 2.3.1. Реакции электрофильного замещения
- 2.3.2. Превращения первичных ароматических аминов через соли арилдиазония
- 3. Задачи и упражнения