logo
Консп_лекц_Окруж_среда Мониторинг

Содержание микроэлементов в поверхностных водах суши и биометаллах

Объекты

Микроэлементы

Содержание, м кг/л

ПДК

Промышленные загрязнения

Cd

≤ 0,0001

(0,01)

Pb

0,0001 – 0,005

(0,1)

Cr

0,0001 – 0,005

(0,1)

Ni

0,0005 – 0,01

(0,1)

Биометаллы

CO

0,0001 – 0,01

(0,1)

Mo

0,0005 – 0,01

(0,5)

Cu

0,002 – 0,05

(0,1)

Zn

0,003 – 0,10

(1,0)

Mn

0,002 – 1,0

(1,0)

Другие микроэлементы: Cd, Pb, Hg, Cr и т.д. являются антропогенными загрязнителями и проявляют сильные токсичные свойства. Например, ионы Pb2+, которые поступают в воду в результате геологических процессов, а также с выхлопными газами автомобилей и свинецсодержащих трубопроводов и аппаратуры, особенно при длительном контакте с водами являются особенно токсичными для кроветворных энзимов и нарушают деятельность нервной системы. Аналогично Hg2+ свинец нарушает работу желудка и лёгких, накапливается в костях, центральной нервной системе и волосе. При содержании Pb в крови уже 0,4 мг/л выявляются симптомы отравления. Особенно опасными для жизни являются микроконцентрации радионуклидов Sr, Ce, Pl и др. радиоактивных элементов. Необходимо отметить, что биометаллы при превышении ПДК также являются токсичными для водных организмов и др. живых существ.

В природных водах значительная часть микроэлементов входит в состав взвесей и коллоидов, в результате чего при увеличении мутности воды их количество в взвесях и коллоидах увеличивается и может достичь 100 %. При этом в состав взвесей входят преимущественно катионы металлов, которые способны образовывать малорастворимые оксиды, например, MnO2, а также гидроксиды, например свинца, Co, Ni, Cu и др. Амфотерные элементы, которые в природных водах содержатся в виде анионов, например МоО42-, и анионы неметаллов адсорбируются на взвесях хуже. При повышении рН воды сорбция микроэлементов увеличивается, однако взвеси разной химической природы и степени дисперсности выявляют неодинаковые сорбционные особенности относительно разных элементов.

По химическому составу растворенные формы микроэлементов в водах могут быть достаточно разнообразными. Так, в зависимости от рН воды и концентрации неорганических и органических лигандов в растворе могут быть незакомплексованные ионы металлов, гидроксокомплексы, карбонатные, сульфатные и хлоридные комплексы, а также координационные соединения ионов металлов со многими органичными лигандами. Некоторые из доминирующих форм, содержание которых может превышать > 1 % являются расчетными с использованием констант стойкости комплексных соединений и отвечают наиболее характерным для природных вод концентрациям лигандов.

В водах для большинства ионов металлов – микроэлементов, кроме ионов Mn, наиболее характерным является комплекс с органическими лигандами. В этом аспекте особенно выделяется Hg, которая практически полностью, более чем на 99 % связана в сульфатные и гуматные комплексы. Значительная часть металлов связывается в карбонатные и гидрокарбонатные комплексы. Вхождение металлов в состав назакомплексованных катионов и гидрокомплексов является менее характерным.

Для марганца, в отличие от других металлов, наиболее распространёнными формами в поверхностных водах суши являются аква-ионы Mn2+ и комплексы состава [MnCO3]0 и [Mn(ФК)n]z-, причем соотношение между этими формами зависит от рН воды. И действительно, в зимне-весенний период, когда интенсивность фотосинтеза незначительная в воде увеличивается содержание СО2, что приводит к снижению её рН, соответственно доминирующей формой являются ионы Mn2+ и их концентрация может даже превысить ПДК. Наоборот, в тёплое время года в условиях интенсивного фотосинтеза рН воды увеличивается и при этом ионы Mn2+ окисляются растворённым в воде О2, что приводит к осаждению MnO2.

Комплексные соединения микроэлементов с органическими лигандами природных вод характеризуются высокими молекулярными массами (табл.6). Однако распределение ионов металлов между комплексами с лигандами различной молекулярной массы неодинаковы. Так например, для ионов Hg (II) характерным является образование комплексов с молекулярной массой < 10 тыс., для ионов Pb > 10 тыс, а комплексы других микроэлементов имеют наиболее характерные молекулярные массы от 1 до 100 тыс.

Комплексные соединения ионов металлов с органическими лигандами природных вод являются достаточно стойкими и характеризуются константами стойкости в пределах 104 - 1012. Крепкое связывание ионов металлов в комплексы с органическими веществами – лигандами природного происхождения часто мешает их количественному определению. Поэтому для получения надёжных результатов при определении валового содержания ионов металлов в водах органические соединения необходимо заблаговременно уничтожить. Однако отдельные формы микроэлементов можно определить специальными методами без непосредственного уничтожения органических соединений.

Таблица 6