1.5.3. Технологические параметры химико-технологических процессов.
Время пребывания исходных веществ в реакционной зоне.
На, давление, концентрации исходных веществ, но и длительность пребывания этих веществ в зоне реакции. В аппаратах периодического действия время пребывания реагентов - это интервал времени между загрузкой и выгрузкой аппарата. В аппаратах непрерывного действия время пребывания исходных веществ в реакционной зоне определяют следующим образом: выход целевого продукта и интенсивность работы аппарата влияют не только температура
где V- реакционный объем, м3 (полезный объем аппарата),
Vt,p - расход исходных веществ, поступающих в реакционный аппарат при температуре и давлении в аппарате, м3/с.
Э то уравнение позволяет получить истинное время пребывания только в идеальном случае, когда все частицы в потоке имеют одинаковую скорость и, следовательно, одинаковое время пребывания в реакционной зоне. В общем случае рассчитанное таким образом время пребывания является средней величиной ср.
Для каталитических процессов рассчитывают время соприкосновения исходных веществ с катализатором. Его называют временем контактирования. Время контактирования находят из отношения свободного объема катализатора Vсв к расходу исходных веществ Vt,p, проходящих через катализатор при условиях процесса.
Свободный объем катализатора - это объем пустот между зернами и в сетках катализатора. Свободный объем Vсв рассчитывают как произведение объема катализатора Vk на долю свободного объема :
Долю свободного объема катализатора называют также порозностью. При расчете времени контактирования во взвешенном слое катализатора свободный объем находят как разность между объемом, занимаемым катализатором во взвешенном состоянии, Vвзв, и объемом твердых частиц катализатора Vk(1-):
Если катализатор выполняется в виде сетки, его свободный объем рассчитывают по формуле:
где - доля свободного объема катализатора,
m - число сеток,
S - рабочая площадь сетки, м2,
d - диаметр нити сетки, м,
3 - числовой коэффициент, учитывающий увеличение толщины сетки при переплетении нитей.
где d - диаметр нити сетки, см;
n - число плетений сетки на 1 см2.
В качестве примера рассмотрим расчет времени контактирования реагентов для синтеза дивинила.
Исходные данные:
В реактор поступает 40 г/ч 95%-го (масс.) этанола. Температура в реакторе 400ОС, давление - 740 мм рт.ст. Объем катализатора 60 мл, доля свободного объема катализатора - 0,6.
м3
где V1,t,p и V2,t,p - расходы паров этанола и воды, поступающих в реактор при условиях процесса, м3/с.
Таким образом,
м3/с ,
где 46 и 18 - молекулярные массы этанола и воды.
Окончательно,
сек
Объемная скорость. Кроме времени пребывания исходных веществ в реакционной зоне для оценки условий проведения процесса рассчитывают объемную скорость. Объемная скорость W - это объем исходных веществ, поступающих в реакционный аппарат в единицу времени в фазовом состоянии, соответствующем условиям проведения процесса (для газофазных процессов – в газообразном состоянии), отнесенный к единице реакционного объема.
Для нахождения объемной скорости расход исходных веществ берут как при условиях проведения процесса (температуре и давлении в реакторе), так и при нормальных условиях (условная объемная скорость):
(м3/м3∙ч=ч-1)
или
где V- объем реактора.
Объемная скорость и время пребывания исходных веществ в реакционной зоне связаны соотношением
В каталитических процессах вместо реакционного объема в расчете объемной скорости используют объем катализатора Vk:
или с учетом
где - доля свободного объема катализатора,
- время контактирования
Аналогично рассчитывают условную объемную скорость
- Содержание
- 1. Введение.
- 1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- Требования к химическим производствам
- Компоненты химического производства
- Разделение на две твердые фазы:
- Разделение жидкости и твердого вещества:
- 1.2 Промышленный катализ
- Основные положения теории катализа.
- 1.3. Сырьевая база химической промышленности.
- Классификация сырья
- Характеристика минерального сырья
- Химическое сырье
- Растительное и животное сырье
- Характеристика разработок минерального сырья
- Качество сырья и методы его обработки
- Способы сортировки:
- Способы обогащения:
- Сырьевая база химических производств
- 1.4 Энергетическая база химических производств
- 1.5 Критерии оценки эффективности производства
- 1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- 1.5.2. Балансы производства
- 1. Материальный баланс
- 2. Энергетический (тепловой) баланс
- 3. Экономический баланс
- 1.5.3. Технологические параметры химико-технологических процессов.
- 1.6.Принципы создания ресурсосберегающих технологий
- 2. Теоретические основы химической технологии
- 2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- 2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- Молекулярная диффузия. Первый закон Фика
- Турбулентная диффузия
- Уравнение массоотдачи
- Уравнение массопередачи
- Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- Подобие массобменных процессов
- 3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- 3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- Методология исследование химико-технологических систем.
- 3.2. Сырьевая и энергетическая подсистема хтс
- 1. Классификация химических реакторов по гидродинамической обстановке.
- 2. Классификация химических реакторов по условиям теплообмена.
- 3. Классификация химических реакторов по фазовому составу реакционной массы.
- 4. Классификация по способу организации процесса.
- 5. Классификация по характеру изменения параметров процесса во времени.
- 6. Классификация по конструктивным характеристикам.
- 3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- Реакторы для гетерогенных процессов с твердой фазой.
- Реакторы для гетерогенно-каталитических процессов.
- 4. Основные математические модели процессов в химических реакторах
- 4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- 4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- Каскад реакторов смешения.
- Влияние степени конверсии.
- Влияние температуры.
- 5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- 5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- Оптимизация степени конверсии.
- 7. Важнейшие промышленные химические производства
- 7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- Синтез аммиака
- Сырье для синтеза аммиака.
- Технология процесса.
- Основные направления в развитии производства аммиака.
- 7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- Физико-химические основы процесса.
- Контактное окисление аммиака.
- Обоснование роли параметров и их выбор.
- Окисление оксида азота (II) до диоксида.
- Абсорбция диоксида азота.
- Технология процесса.
- 7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- Классификация минеральных удобрений.
- 7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- Производство нитрата аммония.
- 7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- Функциональная схема производства эфк.
- Сернокислотное разложение апатита.
- 7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- Производство простого суперфосфата.
- Производство двойного суперфосфата
- Азотнокислое разложение фосфатов. Получение сложных удобрений
- Обжиг серосодержащего сырья.
- Обоснование роли параметров и их выбор.
- Сжигание серы.
- Окисление диоксида серы.
- Обоснование роли параметров и их выбор.
- Технология контактного окисления so2.
- Абсорбция триоксида серы.
- Перспективы развития сернокислотных производств.
- 7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- Основные направления применения электрохимических производств
- Электролиз раствора хлорида натрия
- Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- Электролиз раствора хлорида натрия с ртутным катодом
- 7.6. Промышленный органический синтез
- Первичная переработка нефти.
- Каталитический риформинг углеводородов.
- 7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- 7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- Окисление изопропилбензола (кумола)
- Технологическая схема получения фенола и ацетона кумольным способом.
- 7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- 7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- 7.6.5.2. Производство пищевых белков
- 8. Химико-технологические методы защиты окружающей среды
- 8.1. Утилизация и обезвреживание твердых отходов
- 8.2. Утилизация и обезвреживание жидких отходов
- 8.3. Обезвреживание газообразных отходов