Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
Рассмотрим случай переноса вещества из фазы Фу в фазу Фх; движущая сила массопередачи выражена в единицах концентрации фазы Фу. Количество вещества М, переносимое из фазы в фазу, рассчитываем из уравнения массопередачи. Допустим, что равновесная зависимость между концентрациями в фазах линейна (8) у* = mx, где m – tg угла наклона линии равновесия.
Примем,что концентрации распределяемого вещества в фазах у границы раздела (хгр., угр.) равновесны друг другу.
Тогда из уравнения линии равновесия следует, что:
хгр. = угр./m и х = у*/m
где хгр. и угр - концентрации каждой фазы, у*- концентрация фазы Фу, равновесная с концентрацией х фазы Фх.
Подставляя значения хгр. и х в уравнение массоотдачи , получим .
Определим движущую силу процесса:
Из уравнения движущая сила процесса в фазе Фу
Суммируем почленно уравнения получим:
Уравнение массопередачи для рассматриваемого случая имеет следующий вид:
или
Приравнивая правые части уравнений, находим зависимость между коэффициентами массопередачи Ку и массоотдачи х и у:
При выражении коэффициента массопередачи в конценрациях фазы Фх будем иметь
Левые части уравнений представляют собой общее сопротивление массопередаче, а их правые части – сумму сопротивлений массоотдаче в фазах.
При m = сonst разделим уравнение на m, получим:
или , т.е.
Уравнение (39) аналогично уравнению аддитивности термических сопротивлений, которое устанавливает связь между коэффициентом теплопередачи К и коэффициентами теплоотдачи 1 и 2. В уравнении член 1/у выражает диффузионное сопротивление переходу вещества в фазе Фу, член m/y – сопротивление в фазе Фх. Если коэффициент у велик, то член 1/у мал и, как видно из уравнения,
. В этом случае сопротивлением в фазе Фу можно пренебречь.
При большом коэффициенте х член m/х мал и как видно из уравнения, . В этом случае сопротивлением Фх можно пренебречь.
При выводе уравнения было принято условие линейной зависимости между равновесными концентрациями у* и х. В случае отсутствия такой зависимости линия равновесия не будет прямой и константу равновесия надо брать как тангенс угла наклона касательной к линии равновесия в данной точке. При этом величины m и Ку будут изменяться по длине аппарата. При расчетах берут среднее значение коэффициента распределения m.
Пример. В массообменном аппарате, работающем под давлением Рабс = 3,1 ат, коэффициенты массоотдачи имеют следующие значения:
, . Равновесные составы газовой и жидкой фаз характеризуются законом Генри: р* = 0,08106х . Определить:а) коэффициенты массопередачи Кх и Ку; б) во сколько раз диффузионное сопротивление жидкой фазы отличается от диффузионного сопротивления газовой фазы.
Решение. Используем уравнение Генри-Дальтона
у* = mх:
Находим коэффициенты массопередачи:
Проверка:
Отношение диффузионных сопротивлений жидкой и газовой фаз при движущей силе у:
Такое же отношение будет и при движущей силе х.
Диффузионное сопротивление жидкой фазы в 1,71 раза больше сопротивления газовой фазы.
- Содержание
- 1. Введение.
- 1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- Требования к химическим производствам
- Компоненты химического производства
- Разделение на две твердые фазы:
- Разделение жидкости и твердого вещества:
- 1.2 Промышленный катализ
- Основные положения теории катализа.
- 1.3. Сырьевая база химической промышленности.
- Классификация сырья
- Характеристика минерального сырья
- Химическое сырье
- Растительное и животное сырье
- Характеристика разработок минерального сырья
- Качество сырья и методы его обработки
- Способы сортировки:
- Способы обогащения:
- Сырьевая база химических производств
- 1.4 Энергетическая база химических производств
- 1.5 Критерии оценки эффективности производства
- 1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- 1.5.2. Балансы производства
- 1. Материальный баланс
- 2. Энергетический (тепловой) баланс
- 3. Экономический баланс
- 1.5.3. Технологические параметры химико-технологических процессов.
- 1.6.Принципы создания ресурсосберегающих технологий
- 2. Теоретические основы химической технологии
- 2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- 2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- Молекулярная диффузия. Первый закон Фика
- Турбулентная диффузия
- Уравнение массоотдачи
- Уравнение массопередачи
- Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- Подобие массобменных процессов
- 3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- 3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- Методология исследование химико-технологических систем.
- 3.2. Сырьевая и энергетическая подсистема хтс
- 1. Классификация химических реакторов по гидродинамической обстановке.
- 2. Классификация химических реакторов по условиям теплообмена.
- 3. Классификация химических реакторов по фазовому составу реакционной массы.
- 4. Классификация по способу организации процесса.
- 5. Классификация по характеру изменения параметров процесса во времени.
- 6. Классификация по конструктивным характеристикам.
- 3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- Реакторы для гетерогенных процессов с твердой фазой.
- Реакторы для гетерогенно-каталитических процессов.
- 4. Основные математические модели процессов в химических реакторах
- 4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- 4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- Каскад реакторов смешения.
- Влияние степени конверсии.
- Влияние температуры.
- 5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- 5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- Оптимизация степени конверсии.
- 7. Важнейшие промышленные химические производства
- 7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- Синтез аммиака
- Сырье для синтеза аммиака.
- Технология процесса.
- Основные направления в развитии производства аммиака.
- 7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- Физико-химические основы процесса.
- Контактное окисление аммиака.
- Обоснование роли параметров и их выбор.
- Окисление оксида азота (II) до диоксида.
- Абсорбция диоксида азота.
- Технология процесса.
- 7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- Классификация минеральных удобрений.
- 7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- Производство нитрата аммония.
- 7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- Функциональная схема производства эфк.
- Сернокислотное разложение апатита.
- 7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- Производство простого суперфосфата.
- Производство двойного суперфосфата
- Азотнокислое разложение фосфатов. Получение сложных удобрений
- Обжиг серосодержащего сырья.
- Обоснование роли параметров и их выбор.
- Сжигание серы.
- Окисление диоксида серы.
- Обоснование роли параметров и их выбор.
- Технология контактного окисления so2.
- Абсорбция триоксида серы.
- Перспективы развития сернокислотных производств.
- 7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- Основные направления применения электрохимических производств
- Электролиз раствора хлорида натрия
- Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- Электролиз раствора хлорида натрия с ртутным катодом
- 7.6. Промышленный органический синтез
- Первичная переработка нефти.
- Каталитический риформинг углеводородов.
- 7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- 7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- Окисление изопропилбензола (кумола)
- Технологическая схема получения фенола и ацетона кумольным способом.
- 7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- 7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- 7.6.5.2. Производство пищевых белков
- 8. Химико-технологические методы защиты окружающей среды
- 8.1. Утилизация и обезвреживание твердых отходов
- 8.2. Утилизация и обезвреживание жидких отходов
- 8.3. Обезвреживание газообразных отходов