Технология процесса.
Современные установки, работающие под повышенным давлением (от 0,2 до 1 МПа) разработаны по принципу энерготехнологических схем, в которых энергия отходящих газов (связанная с их высокой температурой и давлением) и теплота реакции окисления аммиака, используются для сжатия воздуха и нитрозных газов, а также получения технологического пара. Этими же схемами предусмотрено более полное использование низкопотенциальной энергии. Принципиальная технологическая схема получения разбавленной азотной кислоты под повышенным давлением приведена на рисунке 2
Атмосферный воздух проходит тщательную очистку в двухступенчатом фильтре (1). Очищенный воздух сжимается двухступенчатым воздушным компрессором (16, 18). В первой ступени (18) воздух сжимается до 0,35 МПа, при этом он нагревается до 165 – 175С за счет адиабатического сжатия. После охлаждения воздух направляется на вторую ступень сжатия (16), где его давление доводят до 0,7 – 0,8 МПа.
Основной поток воздуха после сжатия нагревают в подогревателе (12) до 250 – 270С теплотой нитрозных газов и подают на смешение с аммиаком в смеситель (6).
Газообразный аммиак, полученный испарением жидкого аммиака, после очистки от влаги, масел и катализаторной пыли через подогреватель (5) при температуре 150С также направляют в смеситель (6). Смеситель совмещен в одном аппарате с поронитовым фильтром. После очистки аммиачно-воздушную смесь с содержанием аммиака не более 10% подают в контактный аппарат (14) на окисление аммиака. Конверсия аммиака протекает на Pt-Pd-Rh-сетках при 870-900С причем степень конверсии составляет 97 – 98%. Нитрозные газы при 890 – 910С поступают в котел-утилизатор (15), расположенный под контактным аппаратом. В котле за счет тепла контактных газов протекает испарение химически очищенной деаэрированной воды, питающей котел-утилизатор. При том получается пар с давлением 1,5 МПа и температурой 230С, который поступает потребителю.
После котла-утилизатора нитрозные газы поступают в окислитель нитрозных газов (13). Он представляет собой полый аппарат в верхней части которого установлен фильтр из стекловолокна для улавливания платинового катализатора. Частично окисление нитрозных газов происходит уже в котле-утилизаторе (до 40%). В окислителе (13) степень окисления нитрозных газов доводят до 85%. За счет реакции окисления нитрозные газы нагреваются до 300 – 335С. Эта теплота используется в подогревателе воздуха (12). Охлажденные в теплообменнике (12) нитрозные газы поступают для дальнейшего охлаждения в теплообменник (11), где происходит снижение их температуры до 150С и нагрев хвостовых газов до 110 – 125С. Затем нитрозные газы направляют в холодильник-конденсатор (7), охлаждаемый оборотной водой. При этом конденсируются водяные пары и образуется слабая азотная кислота. Нитрозные газы отделяют от сконденсировавшейся азотной кислоты в сепараторе (8), из которого азотную кислоту направляют в абсорбционную колонну (9) на одну из средних тарелок, с соответствующей концентрацией кислоты. Нитрозные газы направляют в нижнюю часть колонны (9). Сверху в нее подают охлажденный конденсат. Образующаяся в верхней части азотная кислота низкой концентрации перетекает на нижние тарелки и по мере их прохождения укрепляется за счет поглощения новых порций нитрозных газов. При выходе из нижней части колонны концентрация кислоты достигает 55 – 58%, причем содержание растворенных в ней оксидов азота достигает ~ 1%. Поэтому кислота направляется в продувочную колонну (10), где подогретым воздухом из нее отдуваются оксиды азота, а отдутая кислота направляется на склад. Воздух после продувочной колонны подается в нижнюю часть абсорбционной колонны (9).
Степень абсорбции оксидов азота достигает 99%. Выходящие из колонны хвостовые газы с содержанием оксидов азота до 0,11% при температуре 35С проходят подогреватель (11), где нагреваются до 110 – 145С и поступают в топочное устройство (камера сжигания) (3) установки каталитической очистки. Здесь газы нагреваются до температуры 390 – 450С за счет горения природного газа, подогреваемого в подогревателе (4), и направляемого в реактор с двухслойным катализатором (2), где первым слоем служит оксид алюминия. Очистку осуществляют при температурах 690 – 700С. Энергия, вырабатываемая турбиной за счет теплоты хвостовых газов, используется для привода турбокомперессора (18). Затем газы направляют в котел-утилизатор и выбрасывают в атмосферу. Содержание оксидов азота в очищенных выхлопных газах составляет 0,005 – 0,008%, содержание СО2 – 0,23%. Таким образом данный агрегат полностью автономен по энергии.
- Содержание
- 1. Введение.
- 1.1 Общие закономерности химических процессов. Классификация процессов общей химико-технологических процессов
- Требования к химическим производствам
- Компоненты химического производства
- Разделение на две твердые фазы:
- Разделение жидкости и твердого вещества:
- 1.2 Промышленный катализ
- Основные положения теории катализа.
- 1.3. Сырьевая база химической промышленности.
- Классификация сырья
- Характеристика минерального сырья
- Химическое сырье
- Растительное и животное сырье
- Характеристика разработок минерального сырья
- Качество сырья и методы его обработки
- Способы сортировки:
- Способы обогащения:
- Сырьевая база химических производств
- 1.4 Энергетическая база химических производств
- 1.5 Критерии оценки эффективности производства
- 1.5.1. Интегральные уравнения баланса материальных потоков в технологических процессах. Понятие о расходных коэффициентах. Относительный выход продукта
- 1.5.2. Балансы производства
- 1. Материальный баланс
- 2. Энергетический (тепловой) баланс
- 3. Экономический баланс
- 1.5.3. Технологические параметры химико-технологических процессов.
- 1.6.Принципы создания ресурсосберегающих технологий
- 2. Теоретические основы химической технологии
- 2.1. Энергия в химическом производстве. Тепловой эффект реакции в технологических расчетах. Направленность реакции в технологических расчетах
- 2.2 Массообменные процессы. Основные принципы массообменных процессов. Моделирование процессов теплообмена.
- Молекулярная диффузия. Первый закон Фика
- Турбулентная диффузия
- Уравнение массоотдачи
- Уравнение массопередачи
- Связь коэффициента массопередачи и коэффициентов массоотдачи (или уравнение аддитивности фазовых сопротивлений)
- Подобие массобменных процессов
- 3. Химическое производство как сложная система. Иерархическая организация процессов в химическом производстве
- 3.1. Химико-технологические системы (хтс). Элементы хтс. Структура и описание хтс. Методология исследования хтс, синтез и анализ хтс.
- Методология исследование химико-технологических систем.
- 3.2. Сырьевая и энергетическая подсистема хтс
- 1. Классификация химических реакторов по гидродинамической обстановке.
- 2. Классификация химических реакторов по условиям теплообмена.
- 3. Классификация химических реакторов по фазовому составу реакционной массы.
- 4. Классификация по способу организации процесса.
- 5. Классификация по характеру изменения параметров процесса во времени.
- 6. Классификация по конструктивным характеристикам.
- 3.4. Промышленные химические реакторы. Реакторы для гомогенных процессов, гетерогенных процессов с твердой фазой, гетерогенно-каталитических процессов, гетерофазных процессов.
- Реакторы для гетерогенных процессов с твердой фазой.
- Реакторы для гетерогенно-каталитических процессов.
- 4. Основные математические модели процессов в химических реакторах
- 4.1. Идеальные химические реакторы. Непрерывный реактор идеального вытеснения. Непрерывный реактор идеального смешения
- 4.2. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения. Обоснование использования каскада реакторов.
- Каскад реакторов смешения.
- Влияние степени конверсии.
- Влияние температуры.
- 5. Применение кинетических моделей для выбора и оптимизации условий проведения процессов
- 5.1. Экономические критерии оптимизации и их применение для оптимизации реакционных узлов.
- Оптимальные концентрации инициатора и температуры в радикально-цепных реакциях
- Оптимизация степени конверсии.
- 7. Важнейшие промышленные химические производства
- 7.1 Проблема фиксации атмосферного азота. Синтез аммиака, Физико-химические основы производства и обоснование выбора параметров и типа реакционного узла. Технологическая схема процесса.
- Синтез аммиака
- Сырье для синтеза аммиака.
- Технология процесса.
- Основные направления в развитии производства аммиака.
- 7.2. Получение азотной кислоты. Физико-химические основы химических стадий процесса, обоснование выбора параметров и типа реакторов. Технологическая схема процесса.
- Физико-химические основы процесса.
- Контактное окисление аммиака.
- Обоснование роли параметров и их выбор.
- Окисление оксида азота (II) до диоксида.
- Абсорбция диоксида азота.
- Технология процесса.
- 7.3. Производство минеральных удобрений. Классификация минеральных удобрений
- Классификация минеральных удобрений.
- 7.3.1. Азотные удобрения. Физико-химические основы производства нитрата аммония. Устройство реакционного узла. Теоретические основы процесса и его технологическое оформление
- Производство нитрата аммония.
- 7.3.2. Производство фосфорной кислоты. Физико-химические основы процесса. Технологическая схема
- Функциональная схема производства эфк.
- Сернокислотное разложение апатита.
- 7.3.3. Фосфорные удобрения. Физико-химические основы процессов их производства. Типы реакционных узлов.
- Производство простого суперфосфата.
- Производство двойного суперфосфата
- Азотнокислое разложение фосфатов. Получение сложных удобрений
- Обжиг серосодержащего сырья.
- Обоснование роли параметров и их выбор.
- Сжигание серы.
- Окисление диоксида серы.
- Обоснование роли параметров и их выбор.
- Технология контактного окисления so2.
- Абсорбция триоксида серы.
- Перспективы развития сернокислотных производств.
- 7.5. Электрохимические производства. Теоретические основы электролиза водных растворов и расплавленных сред. Технология электролиза раствора хлорида натрия.
- Основные направления применения электрохимических производств
- Электролиз раствора хлорида натрия
- Электролиз раствора NaCl с твердым катодом и фильтрующей диафрагмой
- Электролиз раствора хлорида натрия с ртутным катодом
- 7.6. Промышленный органический синтез
- Первичная переработка нефти.
- Каталитический риформинг углеводородов.
- 7.6.2. Производство этилбензола и диэтилбензола. Теоретические основы процесса и обоснование выбора условий процесса. Технология процесса
- 7.6.3. Синтезы на основе оксида углерода. Производство метанола. Теоретические основы процесса.
- Окисление изопропилбензола (кумола)
- Технологическая схема получения фенола и ацетона кумольным способом.
- 7.6.5. Биохимические производства. Особенности процессов биотехнологии.
- 7.6.5.1. Производство уксусной кислоты микробиологическим синтезом
- 7.6.5.2. Производство пищевых белков
- 8. Химико-технологические методы защиты окружающей среды
- 8.1. Утилизация и обезвреживание твердых отходов
- 8.2. Утилизация и обезвреживание жидких отходов
- 8.3. Обезвреживание газообразных отходов