2Hso4- - 2e- h2s2o8
H2S2O8 + 2H2O = 2H2SO4 + H2O2
В химических реакциях пероксид-анион может, не изменяясь, переходить в другие соединения:
BaO2 + Н2SО4 = H2О2 + 2BaSO4
Вследствие промежуточной степени окисления кислорода (-1), пероксид водорода, в зависимости от условий проведения реакции, может быть как окислителем, так и восстановителем. В кислой среде H2O2 довольно сильный окислитель:
H2O2 + 2H+ + 2e- 2H2O; E0 = 1,78 В
2KI + H2O2 + H2SO4 = I2 + K2SO4 + 2H2O
В то же время пероксид водорода окисляется более сильными окислителями, например, перманганатом калия:
2KMnO4 + 5H2O2 + 3H2SO4 = 2MnSO4 + 5O2 + K2SO4 + 8H2O
Распад пероксида водорода протекает по типу диспропорционирования и катализируется соединениями тяжелых металлов, например, MnO2.
2Н2О2-1 = 2Н2О-2 + О20
Водные растворы пероксида водорода (в основном 3%) применяются для отбеливания тканей и меха, дезинфекции, консервации, протравливания семян. Важную роль пероксид водорода играет в процессах самоочищения природных водоемов, в которых он содержится в ничтожной концентрации (порядка 310-5 моль/л) и эффективно окисляет биологические загрязнения.
Соединения, содержащие О2-1-ион называют надпероксидами. Надпероксиды известны для элементов IА, IIА и IIБ подгрупп. Получают их прямым синтезом или окисление пероксидов
t t
K + O2 = KO2; Na2О2 + О2 = 2NaО2; 2Li2О2 + 2O3 = 4LiО2 + O2
Надпероксиды – кристаллические вещества, обычно имеющие цвет от желтого до оранжевого. Сильные окислители, бурно реагируют с водой и оксидом углерода(IV):
2KO2 + 2H2О = 2KОH + О2 + H2О2; 4KО2 + 2CO2 = 2K2CО3 + 3O2
Соединения со степенями окисления +2 и +1. Положительные степени окисления кислорода проявляются в его соединениях со фтором. Простейший представитель такого рода соединений – OF2. Молекула имеет угловую форму, валентный угол составляет 104º 16'. Дифторид кислорода – ядовитый светло-желтый газ, термически устойчив до 200 – 250 ºС, сильный окислитель, эффективный фторирующий агент. Его получают при быстром пропускании фтора через 2 % раствор щелочи:
2F2 + 2NaOH = OF2 + 2NaF + H2O
Диоксофторид – O2F2 – образуется при непосредственном взаимодействии простых веществ в электрическом разряде или под действием ионизирующих излучений при температуре жидкого воздуха. По структуре молекула диоксофторида аналогична молекуле перекиси водорода. Соединение крайне неустойчиво.
Соединения со степенью окисления +4. В качестве производного, в котором кислород проявляет степень окисления +4, можно рассматривать аллотропную модификацию кислорода – озон.
Молекула озона диамагнитна, имеет угловую форму, валентный угол 116,5º. Длина связи является промежуточной между длиной одинарной или двойной связи. Центральный атом кислорода находится в состоянии sp2-гибридизации. Строение молекулы можно представить следующим образом:
Озон в отсутствие катализатора или ультрафиолетового облучения разлагается довольно медленно даже при 250 ºС. Жидкий озон и его концентрированные смеси взрывоопасны.
Озон по химическим свойствам напоминает кислород, однако отличается большей активностью. Например, озон при обычных условиях окисляет малоактивные металлы:
8Ag + 2O3 = 4Ag2O + O2
Качественной реакцией на озон является посинение бумаги, смоченной иодидом калия и крахмалом (иодокрахмальная бумага), за счет образования иода при окислении KI.
2KI + O3 + H2O = I2 + 2KOH + O2
Озон может достаточно легко переходить в озонид-ион О3-. Так при действии озона на щелочные металлы образуются озониды:
K + O3 = KO3
Наличие в ионе О3- неспаренного электрона обусловливает парамагнитные свойства озонидов и наличие окраски, обычно озониды окрашены в красный цвет. Это кристаллические вещества, самопроизвольно разлагаются уже при комнатной температуре, реагируют с водой:
2KO3 = 2KО2 + О2; 2KО3 + 2Н2О = 2KОН + 2O2 + Н2О2
3.2. Сера
Сера представлена в природе четырьмя изотопами: 32S (95%), 33S, 34S и 36S. Кларк серы составляет 0,03 мол.%. Значительное количество серы находится в виде простого вещества (самородная сера). Однако бóльшая часть серы входит в состав минералов, как сульфидных, так и сульфатных: ZnS - цинковая обманка, сфалерит; PbS - свинцовый блеск, галенит; Cu2S - медный блеск; HgS - киноварь; FeS2 - железный колчедан или пирит; CuFeS2 - халькопирит; Na2SO410H2O - глауберова соль или мирабилит; CaSO42H2O - гипс.
Элемент сера образует несколько аллотропных модификаций. Наиболее устойчива ромбическая сера (-сера), представляющая собой желтые хрупкие кристаллы, нерастворимые в воде, но растворимые в некоторых органических растворителях (сероуглерод, толуол). При температуре выше 96 С устойчива моноклинная сера (-сера). Обе модификации имеют молекулярное строение и построены из циклических молекул S8 , по-разному упакованных в кристалле, т.е. фактически представляют собой полиморфные модификации.
При нагревании кристаллической серы до 113 С она плавится, образуя темную подвижную жидкость, которая при дальнейшем нагревании вначале густеет, а затем снова размягчается и при температуре 445 С закипает. В зависимости от температуры сера образует в парах молекулы разного состава:
>1500 C
S8 S6 S4 S2 S
При выливании кипящей серы в воду образуется пластическая сера, представляющая собой тягучую массу, напоминающую сырой каучук. Пластическая сера образована полимерными зигзагообразными молекулами, неустойчива и со временем переходит в ромбическую серу.
Серу получают главным образом выплавкой самородной серы непосредственно в местах её залегания под землей. Она применяется в производстве серной кислоты, для вулканизации каучука, как инсектицид в сельском хозяйстве. Чистая сера не ядовита. Прием внутрь небольших ее количеств способствует заживлению ран и нарывов. Серный порошок входит в состав мазей для лечения кожных заболеваний.
Строение атома серы - 1s22s22p63s23p43d0 - обуславливает проявление этим элементом степени окисления - 2 при взаимодействии с элементами меньшей электроотрицательности. С элементами большей электроотрицательности (F, O, N, Cl), сера проявляет положительные степени окисления, в основном +4 и +6, за счет переноса части валентных электронов на вакантные d-орбитали:
Химические свойства. Сера - активный неметалл, легко взаимодействующий с активными металлами и неметаллами. В парах серы горит водород:
t
H2 + S H2S
При нагревании сера окисляет углерод и кремний:
t t
С + 2S = CS2; Si + 2S = SiS2
В качестве окислителя сера выступает также при взаимодействии с металлами. Большинство реакций данного типа требует нагревания, при комнатной температуре с серой реагирует только ртуть.
t
Zn + S = ZnS; Hg + S = HgS
Использование избытка серы приводит к образованию полисульфидов, простейшим представителем которых является дисульфид железа(II), образующий минерал пирит:
Fe + 2S = FeS2
При взаимодействии с галогенами и кислородом сера выступает в качестве восстановителя. Фтор обычно окисляет серу до высшей степени окисления с образованием SF6. Взаимодействие серы с хлором идет ступенчато:
t t
2S + Cl2 = S2Cl2; S2Cl2 + Cl2 = 2SCl2
Горение серы на воздухе и в атмосфере кислорода приводит к образованию оксида серы(IV):
t
S + O2 = SO2
При кипячении с кислотами-окислителями (азотная и концентрированная серная кислота) сера также окисляется:
t
S + 4HNO3(конц) = SO2 + 4NO2 + 2H2O
При нагревании с водными растворами щелочей сера диспропорционирует:
3S0 + 6KOH = 2K2S-2 + K2S+4O3 + 3H2O
- Таврический национальный университет
- Лекция № 1. Водород
- Соединения водорода
- Литература: [1] с. 330 - 338, [2] с. 411 - 415, [3] с. 262 - 270 Лекция № 2. Элементы VII-a-подгрупы (галогены)
- Cоединения галогенов
- Лекция № 3. Элементы via-подгруппы
- 3.1. Кислород
- Соединения кислорода
- 2Hso4- - 2e- h2s2o8
- Соединения серы
- 3.3. Подгруппа селена
- Соединения селена и теллура
- Литература: [1] с. 359 - 383, [2] с. 425 - 435, [3] с. 297 - 328 Лекция № 4. Элементы va-подгруппы
- Соединения азота
- 4.2. Фосфор
- Соединения фосфора
- 4.3. Элементы подгруппы мышьяка
- Соединения мышьяка, сурьмы и висмута
- Литература: [1] с. 383 - 417, [2] с. 435 - 453, [3] с. 328 - 371 Лекция № 5. Элементы iva-подгруппы
- 5.1. Углерод
- Соединения углерода
- 5.2. Кремний
- Соединения кремния
- 5.3. Германий, олово, свинец
- Соединения германия
- Соединения олова
- Соединения свинца
- Литература: [1] с. 417 - 435, 491 - 513, [2] с. 453 - 472, [3] с. 371 - 409 Лекция № 6. Элементы iiia-подгруппы
- Соединения бора
- 6.2. Алюминий
- Соединения алюминия
- 6.3. Подгруппа галлия
- Соединения элементов подгруппы галлия
- Литература: [1] с. 608 - 619, [2] с. 472 - 481, [3] с. 412 - 446 Лекция № 7. Элементы iia-подгруппы
- 7.1. Бериллий
- Соединения бериллия
- 7.2. Магний
- Соединения магния
- 7.3. Щелочноземельные металлы
- Соединения щелочноземельных металлов
- Литература: [1] с. 587 - 599, [2] с. 481 - 486, [3] с. 447 - 460
- 7.4. Элементы ia-подгруппы (щелочные металлы)
- Соединения щелочных металлов
- Литература: [1] с. 543 - 551, [2] с. 486 - 489, [3] с. 461 - 470 Лекция № 8. Общая характеристика d-элементов. Элементы iiiв - vb подгрупп (подгруппы скандия,титана и ванадия)
- 8.1. Общая характеристика d-элементов
- 8.2. Элементы iiiв подгруппы (подгруппа скандия)
- Соединения элементов подгруппы скандия
- 8.3. Элементы ivв подгруппы (подгруппа титана)
- Соединения титана, циркония и гафния
- 8.4. Элементы vв подгруппы (подгруппа ванадия)
- Соединения ванадия, ниобия и тантала
- Литература: [1] с. 619 - 633, [2] с. 489 - 523, [3] с. 478 - 481, 499 - 520 Лекция № 9. Элементы viв- и viiв-подгрупп
- 9.1 Элементы viв-подгруппы (подгруппа хрома)
- Соединения хрома, молибдена и вольфрама
- 9.2. Элементы viiв-подгруппы (подгруппа марганца)
- Соединения маргнаца, технеция и рения
- Литература: [1] с. 633 - 645, [2] с. 523 - 539, [3] с. 521 - 548 Лекция № 10. Элементы viiib-подгруппы
- 10.1. Элементы триады железа
- Соединения железа
- Соединения кобальта
- Соединения никеля
- Литература: [1] с. 650 - 679, [2] с. 540 - 550, [3] с. 548 - 584
- 10.2. Платиновые металлы
- Соединения рутения и осмия
- Соединения родия и иридия
- Соединения палладия и платины
- Лекция № 11. Элементы ib- и iib-подгрупп
- 11.1 Элементы ib-подгруппы (подгруппы меди)
- Соединения меди
- Соединения серебра
- Соединения золота
- 11.2. Элементы iib-подгруппы (подгруппа цинка)
- Соединения цинка и кадмия
- Соединения ртути
- Литература: [1] с. 551 - 563, 599 - 608, [2] с. 550 - 554, [3] с. 585 - 602
- Лекция № 12. Химия f-элементов
- 12.1. Лантаниды
- Соединения лантанидов
- 12.2. Актиниды
- Соединения актинидов
- Лекция № 13. Инертные газы
- 13.1. Гелий. Неон. Аргон
- 13.2. Элементы подгруппы криптона
- Соединения криптона, ксенона и радона
- Список рекомендуемой литературы
- Содержание