Cоединения галогенов
Соединения со степенью окисления –1. Наиболее важными соединениями галогенов в степени окисления -1 являются галогеноводороды, галогеноводородные кислоты и их соли.
Галогеноводороды, кроме HF, представляют собой токсичные газы с резким удушающим запахом. Молекулы фтороводорода сильно ассоциированы за счет прочных водородных связей, по этой причине HF имеет аномально высокую температуру кипения (19,6 С). Фтороводород получают действием концентрированной серной кислоты на фториды. Эта же реакция используется для лабораторного получения хлороводорода:
t
NaCl(кр) + H2SO4(конц) = HCl + NaHSO4
В промышленности хлороводород получают прямым синтезом, бромоводород и иодоводород - гидролизом тригалогенидов фосфора, которые получают непосредственно в реакторе:
t
2P + 3Br2 + 6H2O = 2H3PO3 + 6HBr
Жидкий фтороводород является прекрасным ионизирующим растворителем, в котором многие вещества ведут себя как основания, поскольку взаимодействуя с HF, увеличивают концентрацию отрицательных ионов растворителя:
2HF H+ + HF2-
HNO3 + 2HF NO3H2+ + HF2-
основание
Кислотами в жидком фтористом водороде являются акцепторы фторид-аниона, например, фториды некоторых металлов:
SbF5 + HF H+ + [SbF6]-
Галогеноводороды хорошо растворимы в воде, образуя растворы соответствующих кислот: HF - фтороводородная или плавиковая кислота, HCl - хлороводородная или соляная кислота, HBr - бромоводородная и HI - иодоводородная кислоты. Плавиковая кислота - кислота средней силы (Кa = 710-4), остальные галогеноводородные кислоты сильные, при переходе от HCl к HI сила кислоты увеличивается.
Концентрированная соляная кислота обычно представляет собой 37 % раствор хлороводорода. Бромистоводородная и иодистоводородная кислоты напоминают соляную, но менее устойчивы к окислению. Иодоводород окисляется уже кислородом воздуха:
4HI + O2 = 2I2 + 2H2O
Фтороводород, а также плавиковая кислота энергично разрушают стекло, поэтому кислоту хранят в пластиковой или парафинированной посуде:
SiO2 + 6HF = H2[SiF6] + 2H2O
Плавиковая кислота и фториды металлов токсичны, кислота при попадании на кожу вызывает сильные и долго не заживающие ожоги. Большинство солей плавиковой кислоты в воде плохо растворимы. Хорошо растворимы фториды натрия, калия и серебра. В отличие от других галогеноводородных кислот, плавиковая кислота образует кислые соли - производные димера (HF)2, например, KHF2 или KFHF.
Большинство хлоридов (солей соляной кислоты) хорошо растворимы в воде. Малорастворимы AgCl, PbCl2, CuCl, Hg2Cl2. Образование белого творожистого осадка хлорида серебра используется как качественная реакция на хлорид-анион:
Ag+ + Cl- = AgCl
Хлорид натрия применяется для консервации и как пищевкусовая добавка, в химической промышленности для получения соды, хлора, гидроксида натрия. Хлорид калия используется в качестве удобрения.
К малорастворимым солям бромоводородной и иодоводородной кислот относятся бромиды и иодиды серебра и свинца(II), а также иодид ртути(II). Бромиды натрия и калия используют в медицине в качестве транквилизаторов. Иодид калия применяют при лечении заболеваний щитовидной железы. Бромид серебра используется в фотоделе в качестве светочувствительного материала.
К кислородсодержащим соединениям галогенов в степени окисления –1 относятся фториды кислорода: газообразный OF2 и кристаллический O2F2.
OF2 получают, пропуская фтор через разбавленный раствор гидроксида натрия при охлаждении:
2NaOH + 2F2 = 2NaF + H2O + OF2
При пропускании через смесь фтора и кислорода электрического разряда образуется O2F2 - желто-оранжевое кристаллическое вещество. Фториды кислорода - сильные окислители и фторирующие реагенты.
Соединения со степенью окисления +1. Известны оксиды хлора - Cl2O и брома - Br2O. Получить оксиды можно только косвенным путем. Например:
2HgO + 2Сl20 = Hg2OCl2 + Cl2+1O
Молекула оксида хлора(I) имеет угловое строение, валентный угол равен 110, гибридизация атомных орбиталей кислорода – sp3. Оксид хлора(I) - желто-бурый газ с резким запахом, ядовит. Оксид брома(I) – красно-коричневая жидкость (tпл = -17 C). Эти вещества нестабильны, типичные кислотные оксиды.
Cl2O + H2O = 2HClO; Br2O + H2O = 2HBrO
Кислоты (HClO хлорноватистая, HBrO бромноватистая, HIO иодноватистая) неустойчивы, известны только в разбавленных растворах. В ряду HClO - HBrO – HIO устойчивость растет, все кислоты слабые, например, константа диссоциации HClO равна 5·10-8.
Соли гипохлориты, гипобромиты и гипоиодиты получаются диспропорционированием соответствующих галогенов в растворах щелочей при низкой температуре:
Э20 + 2NaOH NaЭ-1 + NaЭ+1O + H2O.
Все соединения галогенов со степенью окисления +1 сильные окислители. Соли склонны к реакции диспропорционирования, легко разлагаются, особенно в присутствии катализаторов:
3КЭ+1O = 2КЭ-1 + КЭ+5O3; 2КЭ+1O = 2КЭ-1 + O2.
Из солей наибольшее применение находит хлорная известь - смешанный гипохлорит-хлорид кальция - Ca(ClO)Cl (отбеливающее средство, средство для дегазации и дешевый окислитель). Получается при взаимодействии хлора с гашеной известью:
Cl2 + 2Сa(OH)2 СaCl2 + Сa(ClO)2 + 2H2O.
Степень окисления +1 также проявляется в соединениях с более электроотрицательными галогенами. Интергалогегиды образуются при непосредственном взаимодействии простых веществ. Например, фторид хлора(I) получают при нагревании сухих веществ выше 270 С.
Формула | Агрегатное состояние | Тпл., С | Ткип., С |
ClF | бесцветный газ | -154 | -101 |
BrF | газ красного цвета | -33 | +20 |
BrCl | газ желтого цвета | -54 | +5 |
ICl | твердое вещество красного цвета | +27 | 97 (разл.) |
IBr | твердое вещество серого цвета | +42 | 119 (разл.) |
Интергалогениды данного типа очень неустойчивы за исключением ICl и ClF. Их кислотный характер подтверждается отношением к воде, а также их взаимодействием с однотипными производными щелочных и щелочноземельных металлов.
ClF + H2O = HClO + HF; ICl + H2O = HIO + HCl;
ClF + NaF = Na[ClF2]; ICl + NaCl = Na[ICl2].
дифторохлорат(I) дихлороиодат(I)
Иодиды щелочных металлов склонны в растворах присоединять молекулу иода с образованием полигалогенидов. Реакцию формально можно рассматривать как взаимодействие с кислотным иодидом иода(I):
I+1I-1 + KI-1 = K[I+1I2-1].
дииодоиодат(I)
К бинарным соединениям хлора в степени окисления +1 следует отнести нитрид хлора(I) – Сl3N. Молекула нитрида имеет геометрию тригональной пирамиды, с sp3-гибридизацией орбиталей атома азота. Соединение представляет собой темно-желтое масло с температурой плавления –27 С, летучее, очень неустойчивое.. Кислотный характер соединения подтверждается реакцией гидролиза:
Cl3N + 3H2O = 3HClO + NH3
Соединения со степенью окисления +3. Соединения в степени окисления +3 немногочисленны, оксиды неизвестны, а соответствующие им анионы ЭO2 неустойчивы и легко диспропорционируют:
3HЭ+3O2 = 2HЭ+5O3 + НЭ-1
НClO2 даже в водном растворе быстро разлагается, представляет собой кислоту средней силы (Ка = 1·10-2), называемую хлористой. Хлориты щелочных и щелочноземельных металлов представляют собой белые кристаллические вещества, при нагревании легко диспропорционируют или разлагаются с выделением кислорода. NaClO2·3H2O применяют при отбеливании тканей и бумажной массы.
Известны интергалогениды со степенью окисления +3:
Формула | Агрегатное состояние | Тпл., С | Ткип., С |
ClF3 | светло-зеленый газ | -76,3 | +11,6 |
BrF3 | жидкость | +8,8 | +125,8 |
IF3 | твердое легкоплавкое вещество | - | - |
ICl3 | желтые игольчатые кристаллы | - | - |
Молекулы тригалогенидов имеют Т-образное строение, сильные окислители, например, в парах ClF3 горят такие устойчивые вещества, как стеклянная вата, оксиды алюминия, магния и др.
2Al2O3 + 4ClF3 = 4AlF3 + 3O2 + 2Cl2
Это кислотные соединения, их гидролиз сопровождается диспропорционированием, например:
BrF3 + 2H2O = HBrO2 + 3HF
3HBr+3O2 = 2HBr+5O3 + НBr-1
3BrF3 + 6H2O = 2HBrO3 + НBr + 9HF
Трифториды брома и хлора применяют как фторирующие агенты, а BrF3 и IF3 - в качестве неводных растворителей при проведении специальных синтезов.
Соединения со степенью окисления +4. Оксид хлора(IV) - ClO2 ядовитый газ желтого цвета, взрывоопасный, получают, действуя на хлорат калия концентрированной серной кислотой:
КCl+5O3 + H2SO4 = KCl+7O4 + Cl+4O2 + K2SO4 + H2O
Молекула-радикал ClO2 имеет угловое строение, атомные орбитали хлора находятся в sp2-гибридизации, валентный угол 118 º:
Оксид хлора(IV) является смешанным ангидридом двух кислот (хлористой и хлорноватой):
2Cl+4O2 + H2O = HCl+3O2 + HCl+5O3
Соединения со степенью окисления +5. Из оксидов в степени окисления +5 известен только оксид иода(V), твердое вещество, достаточно устойчивое к нагреванию, разлагается при температуре выше 300 ºС. Энергично взаимодействует с водой, образуя иодноватую кислоту:
I2O5 + H2O = 2HIO3
Известны соответствующие кислоты хлора и брома – хлорноватая и бромноватая. Хлорноватую и иодноватую кислоты получают обменной реакцией:
Вa(ЭO3)2 + H2SO4 = 2HЭO3 + BaSO4
Бромноватая кислота образуется в водных растворах при действии на соединения брома окислителей:
Br2 + 5Cl2 + 6H2O = 2HBrO3 + 10HCl
Хлорноватая кислота по свойствам напоминает азотную кислоту, её смесь с соляной кислотой – окислитель такой силы как "царская водка". Сила кислот в ряду HClO3 - HBrO3 - HIO3 несколько убывает, а устойчивость, наоборот, повышается. Если хлорноватая кислота устойчива только в растворах с концентрацией до 40 %, то HIO3 можно выделить в твердом состоянии – это бесцветные кристаллы с температурой плавления 110 С. При нагревании HIO3 образуется соответствующий оксид - I2O5.
Соли кислот – хлораты, броматы и иодаты. Анион имеет геометрию тригональной пирамиды, атомные орбитали хлора находятся в sp3-гибридизации:
Наибольшее практическое значение имеет хлорат калия (бертолетова соль), его получают пропуская хлор через горячий раствор щелочи. КClO3 мало растворим в воде, поэтому его легко отделяют от KCl при охлаждении раствора.
>70 C
3Cl2 + 6КOH 5КCl + КClO3 + 3H2O
При нагревании хлораты диспропорционируют, а в присутствии катализатора (MnO2) разлагаются с выделением кислорода:
4KCl+5O3 = 3KCl+7O4 + KCl-1; 2KCl+5O3 = 2KCl-1 + 3O2
Сильные окислители – хлораты – в смеси с восстановителями образуют легко взрывающиеся составы. Бертолетову соль используют в производстве спичек и фейерверков, хлорат натрия применяют в борьбе с сорняками. Иодаты значительно устойчивее соответствующих хлоратов и броматов, однако при сильном нагревании также разлагаются с выделением кислорода.
Из соединений в степени окисления +5 известны интер- и оксогалогениды:
Формула | Агрегатное состояние | Тпл., С | Ткип., С |
ClF5 | неустойчивый газ | -93 | -13 |
ClОF3 | - | - | - |
ClО2F | бесцветный газ | -115 | -6 |
BrF5 | бесцветная жидкость | -62 | - |
BrО2F IF5 IО2F | бесцветная жидкость бесцветная жидкость твердое вещество | -9 +9,6 разл.>300 | - - - |
Гидролиз соединений данного типа идет по следующей схеме:
ClО2F + H2O = HClO3 + HF; BrF5 + 3H2O = HBrO3 + 5HF
С основными соединениями галогениды и оксогалогениды дают соответствующие соли, например:
IF5 + KF = K[IF6]; IF5 + 6KOH = KIO3 + 5KF + 3H2O
Соединения со степенью окисления +7. Оксид известен только для хлора - Cl2O7. Это бесцветная жидкость (т.пл. –93,4 С, т.кип. +83 С). Получается при нагревании хлорной кислоты с оксидом фосфора(V):
2HClO4 + P2O5 = Cl2O7 + 2H3PO4
Молекула Cl2O7 полярна ( = 0,24·10-29 Кл·м), в ней согласно электронографическому исследованию два тетраэдра объединены через атом кислорода. Длина связи между атомами хлора и терминальными атомами кислорода составляет 0,172 нм, а между хлором и мостиковым атомом кислорода – 0,142 нм.
Оксид хлора(VII) относительно устойчив, но при нагревании выше 120 С разлагается со взрывом. Оксиду соответствует хлорная кислота:
Cl2O7 + H2O = 2HClO4
Анион ClO4- имеет тетраэдрическое строение, что в рамках теории валентных связей соответствует sp3-гибридизации валентных орбиталей атома хлора, стабилизированной за счет -связей:
Хлорную кислоту получают действием на хлораты концентрированной серной кислотой:
KClO4 + H2SO4 = HClO4 + KHSO4
Хлорная кислота - одна из самых сильных минеральных кислот, это бесцветная жидкость (т.пл. –102 С) хорошо растворимая в воде, способная взрываться. Вследствие повышения устойчивости анионов в ряду: ClO- - ClO2- - ClO3- - ClO4- окислительная способность соединений уменьшается, а сила кислот растет. Из солей хлорной кислоты наибольшее значение имеет KClO4, который получают электролизом раствора KClO3.
Бромная кислота - HBrO4 - в свободном состоянии не выделена, но получены её водные растворы. Ее устойчивые соли - перброматы получают по следующей реакции:
NaBrO3 + 2NaOH + F2 = NaBrO4 + H2O + 2NaF
По силе бромная кислота приближается к хлорной, а по окислительной активности она сильнее. Для иода в степени окисления +7 характерно образование ортокислоты – H5IO6 – это бесцветное кристаллическое вещество (т.пл. 122 С), растворимое в воде. Кислотные свойства иодной кислоты выражены слабее, чем хлорной (К1= 2,8·10-2, К3= 2,5·10-13). Периодаты получают либо реакцией диспропорционирования иодатов, либо их окислением:
5Ba(IO3)2 = Ba5(IO6)2 + 4I2 + 9O2;
KIO3 + 6KOH + Cl2 = K5IO6 + 2KCl + 3H2O
Из соединений в степени окисления +7 известны галогениды и оксогалогениды:
Формула | Агрегатное состояние | Тпл., С | Ткип., С |
ClO3F | бесцветный газ | -147,8 | -46,7 |
BrF7 | неустойчивый газ | - | - |
IF7 IО3F | неустойчивый газ белое кристаллическое вещество | - разл.>90 | - - |
Триоксофторид хлора, в отличие от остальных соединений, обладает высокой термической и гидролитической устойчивостью: он не разлагается и не гидролизуется даже при температуре 260 С. Его кислотная природа проявляется при взаимодействии с концентрированными растворами щелочей:
ClО3F + 2NaOH = NaClO4 + NaF + H2O
Литература: [1] с. 338 - 359, [2] с. 415 - 423, [3] с. 270 - 296
- Таврический национальный университет
- Лекция № 1. Водород
- Соединения водорода
- Литература: [1] с. 330 - 338, [2] с. 411 - 415, [3] с. 262 - 270 Лекция № 2. Элементы VII-a-подгрупы (галогены)
- Cоединения галогенов
- Лекция № 3. Элементы via-подгруппы
- 3.1. Кислород
- Соединения кислорода
- 2Hso4- - 2e- h2s2o8
- Соединения серы
- 3.3. Подгруппа селена
- Соединения селена и теллура
- Литература: [1] с. 359 - 383, [2] с. 425 - 435, [3] с. 297 - 328 Лекция № 4. Элементы va-подгруппы
- Соединения азота
- 4.2. Фосфор
- Соединения фосфора
- 4.3. Элементы подгруппы мышьяка
- Соединения мышьяка, сурьмы и висмута
- Литература: [1] с. 383 - 417, [2] с. 435 - 453, [3] с. 328 - 371 Лекция № 5. Элементы iva-подгруппы
- 5.1. Углерод
- Соединения углерода
- 5.2. Кремний
- Соединения кремния
- 5.3. Германий, олово, свинец
- Соединения германия
- Соединения олова
- Соединения свинца
- Литература: [1] с. 417 - 435, 491 - 513, [2] с. 453 - 472, [3] с. 371 - 409 Лекция № 6. Элементы iiia-подгруппы
- Соединения бора
- 6.2. Алюминий
- Соединения алюминия
- 6.3. Подгруппа галлия
- Соединения элементов подгруппы галлия
- Литература: [1] с. 608 - 619, [2] с. 472 - 481, [3] с. 412 - 446 Лекция № 7. Элементы iia-подгруппы
- 7.1. Бериллий
- Соединения бериллия
- 7.2. Магний
- Соединения магния
- 7.3. Щелочноземельные металлы
- Соединения щелочноземельных металлов
- Литература: [1] с. 587 - 599, [2] с. 481 - 486, [3] с. 447 - 460
- 7.4. Элементы ia-подгруппы (щелочные металлы)
- Соединения щелочных металлов
- Литература: [1] с. 543 - 551, [2] с. 486 - 489, [3] с. 461 - 470 Лекция № 8. Общая характеристика d-элементов. Элементы iiiв - vb подгрупп (подгруппы скандия,титана и ванадия)
- 8.1. Общая характеристика d-элементов
- 8.2. Элементы iiiв подгруппы (подгруппа скандия)
- Соединения элементов подгруппы скандия
- 8.3. Элементы ivв подгруппы (подгруппа титана)
- Соединения титана, циркония и гафния
- 8.4. Элементы vв подгруппы (подгруппа ванадия)
- Соединения ванадия, ниобия и тантала
- Литература: [1] с. 619 - 633, [2] с. 489 - 523, [3] с. 478 - 481, 499 - 520 Лекция № 9. Элементы viв- и viiв-подгрупп
- 9.1 Элементы viв-подгруппы (подгруппа хрома)
- Соединения хрома, молибдена и вольфрама
- 9.2. Элементы viiв-подгруппы (подгруппа марганца)
- Соединения маргнаца, технеция и рения
- Литература: [1] с. 633 - 645, [2] с. 523 - 539, [3] с. 521 - 548 Лекция № 10. Элементы viiib-подгруппы
- 10.1. Элементы триады железа
- Соединения железа
- Соединения кобальта
- Соединения никеля
- Литература: [1] с. 650 - 679, [2] с. 540 - 550, [3] с. 548 - 584
- 10.2. Платиновые металлы
- Соединения рутения и осмия
- Соединения родия и иридия
- Соединения палладия и платины
- Лекция № 11. Элементы ib- и iib-подгрупп
- 11.1 Элементы ib-подгруппы (подгруппы меди)
- Соединения меди
- Соединения серебра
- Соединения золота
- 11.2. Элементы iib-подгруппы (подгруппа цинка)
- Соединения цинка и кадмия
- Соединения ртути
- Литература: [1] с. 551 - 563, 599 - 608, [2] с. 550 - 554, [3] с. 585 - 602
- Лекция № 12. Химия f-элементов
- 12.1. Лантаниды
- Соединения лантанидов
- 12.2. Актиниды
- Соединения актинидов
- Лекция № 13. Инертные газы
- 13.1. Гелий. Неон. Аргон
- 13.2. Элементы подгруппы криптона
- Соединения криптона, ксенона и радона
- Список рекомендуемой литературы
- Содержание