logo
ELEMENTY

12.2. Актиниды

Рассматриваемое семейство включает элементы с порядковыми номерами от 90 до 103: торий, протактиний, уран, нептуний, плутоний, америций, кюрий, берклий, калифорний, эйнштейний, фермий, менделеевий, нобелий, лоуренсий. Могут рассматриваться как аналоги лантанидов, однако элементы подсемейства тория (Th – Cm) существенно от них отличаются. Связано это с тем, что подуровни 5f, 6d и 7s весьма близки по энергии, в результате 5f-электроны могут переходить на 6d-подуровень и участвовать в образовании связи. Вследствие близости 5f- и 6d-состояний элементы подсемейства тория выступают и как f-, и как d-элементы и проявляют переменные степени окисления. Например, уран может образовывать соединения со степенями окисления +3, +4 и +6 (5f36d17s2  5f26d27s2  5f06d47s2).

Семь элементов подсемейства берклия (Bk - Lr), у f-орбитали заполнены наполовину и переход электронов на 6d-орбитали затрудняется, ведут себя как типичные f-элементы и по свойствам близки к лантанидам.

Характер заполнения f-орбиталей предопределяет внутреннюю периодичность в изменении максимальных степеней окисления, а следовательно свойств актинидов и их соединений:

Элемент

Th

Pa

U

Np

Pu

Am

Cm

Максимальная

степень окисления

+4

+5

+6

+7

+7

+6

+4

Элемент

Bk

Cf

Es

Fm

Md

No

Lr

Максимальная

степень окисления

+4

+3

+3

+3

+3

+3

+3

Торий и уран относятся к рассеянным элементам, протактиний - к редким. В земной коре содержится тория – 7·10-5 мол.%, урана - 2·10-5 мол.%, а протактиния - 8·10-12 мол.%. Богатые торием и ураном минералы встречаются редко, к ним относятся торит ThSiO4 и уранит UO2-3. Протактиний сопутствует урану. Остальные актиниды в природе не встречаются (за исключением ничтожных количеств нептуния и плутония), они получены искусственно с помощью ядерных реакций в 1940 - 1961 годах.

Все актиниды радиоактивны. Если период полураспада для урана составляет 1016 лет, то для кюрия он равен 106 лет, для калифорния – порядка 1 года, для фермия период полураспада составляет всего несколько часов. В настоящее время возможности получения Np и Pu исчисляются в килограммах, Am и Cm – в десятках граммов, Bk и Cf – в миллиграммах, Es – в микрограммах, остальных актинидов – несколькими атомами. В соответствие с этим из актинидов лучше всего изучены первые семь элементов подсемейства тория. Это серебристо-белые металлы с высокой плотностью и относительно высокими температурами плавления:

Элемент

Th

Pa

U

Np

Pu

Am

Cm

Плотность, г/см3

11,7

15,4

19,0

20,4

19,7

11,9

13,5

Т.пл., ºС

1750

1575

1133

637

640

1200

1340

Поскольку актиниды химически высокоактивны, их получают электролизом расплавленных соединений, металлотермией или термическим разложением соединений в вакууме. Например, уран и торий выделяют электролизом расплавленных комплексных фторидов (обычно КЭF5); нептуний, плутоний, а также америций и кюрий – восстановлением фторидов парами бария или натрия:

NpF4 + 2Ba = Np + 2BaF2

Протактиний получают термическим разложением хлоридов:

2PaCl5 = 2Pa + 5Cl2

Использование актинидов и их соединений в основном связано с атомной энергетикой. Торий представляет интерес как легирующая добавка для получения жаропрочных сплавов.

Химические свойства. Актиниды химически активны. На воздухе большинство из них медленно окисляется кислородом и азотом. При сгорании металлов в кислороде образуются оксиды в наиболее устойчивых степенях окисления. Например:

Th + O2 = ThO2; 4Pa + 5О2 = 2Pa2O5;

3U + 4O2 = U3O8 (UO2·2UO3); Pu + О2 = PuO2

При нагревании актиниды взаимодействуют с большинством неметаллов. Например:

Th + 2Cl2 = ThCl4; Th + 2S = ThS2; Th + 2C = ThC2

В ряду стандартных электродных потенциалов актиниды стоят далеко впереди водорода, поэтому окисляются водой и тем более кислотами. Со щелочами в обычных условиях не реагируют.

U + 2H2O = UO2 + 2H2

Тория и уран способны поглощать большое количество водорода, образуя гидриды переменного состава AnH3-4.