2. Образование 80s-комплекса инициации
II стадия ЭЛОНГАЦИИ ( включает 3 этапа)
связывание аминоацил-т-РНК (узнавание кодона)
образование пептидной связи
транслокация (перемещение рибосомы относительно м-РНК)
мет мет арг
Р-уч. А-учфактор элонгации ЕF1, доставляет аминоацил-т-РНК
АУГ-ЦГА-ГЦУ-м- РНКАУГ-ЦГА-ГЦУ
ГТФ ГДФ+Ф
Пептидилтрансфераза
катализирует образование пептидной связи арг-мет
мет свободный мет арг
Р-уч. А-учфактор транслокации
АУГ-ЦГА-ГЦУАУГ-ЦГА-ГЦУ
ГДФ+Ф ГТФ
Цикл начинается с введения аминоацил–т-РНК в пустой А-участок рибосомы. В зависимости от того, какой кодон м-РНК находится в А-участке выбирается определенная разновидность т-РНК. Комплиментарная аминоацил-т-РНК оставляется в А-участок фактором элонгации ЕF1. Когда аминоацил-т-РНК занимает правильное положение на рибосоме происходит гидролиз 1 молекулы ГТФ.
Т.о. имеется комплекс, в котором аминоацил-т-РНК занимает А-участок, а мет-т-РНК занимает Р-участок. Все готово к образованию пептидной связи. Эту реакцию катализирует пептидилтрансфераза, входящая в состав 60S-субъединицы.
Активированная мет-т-РНК с Р-участка переносится на амино-группу аминоацил-т-РНК в А-участок, образуя дипептид т-РНК.
После этого под действием фактора элонгации – транслоказы происходит сдвиг рибососмы по м-РНК на 3 нуклеотида, используя энергию ГТФ. В А-участке оказывается следующий кодон или триплет нуклеотидов, характерный для определенной АК. Дальнейшее удлинение цепи происходит путем многократного повторения этих процессов. Скорость элонгации довольно велика: пептид из 100 АК образуется ≈ за 2 мин. Остаток метможет отщепляться в ходе элонгации от цепи под действием специфическойпептидгидролазы, а может и сохраниться в некоторых белках.
III стадия ТЕРМИНАЦИЯ.Удлинение пептидной цепи продолжается до тех пор пока А-участок не окажется занятым одним из стоп-кодонов УАА, УАГ, УГА. В этом случае при участии факторов терминации происходит гидролитическое взаимодействие между пептидом и последней т-РНК, а в цитоплазму высвобождается готовый белок.
В результате трансляции не всегда образуется функционально активный белок. Во многих случаях необходимы дополнительные пострансляционные изменения.
Принципиальная схема биосинтеза белка (по А.С. Спирину).
ЛЕКЦИЯ 6
- Предмет и задачи биохимии. История биохимии
- Краткая история развития биохимии
- Белки как уникальный класс биополимеров
- Физико-химические свойства белков
- Элементный состав белков
- Форма белковых молекул.
- Функции белков.
- Физико-химические свойства аминокислот
- Цвиттер-ион
- Экспериментальные доказательства полипептидного строения белков
- Классификация белков
- Структурная организация белков.
- Определение первичной структуры белка (псб).
- Вторичная структура белка (всб).
- Беспорядочный клубок
- Денатурация и ренативация белка
- Гемоглобинозы
- Методы выделения и очистки белков.
- Методы определения Mr белков
- Методы определения гомогенности белков
- Нуклеиновые кислоты
- Состав нуклеиновых кислот
- Углеводная часть
- Состав нуклеиновых кислот
- Наиболее распространенные нуклеотиды клетки.
- Вторичная структура днк. Правила Чаргаффа.
- Синтез белка
- 1. Образование 40s-комплекса инициации
- 2. Образование 80s-комплекса инициации
- Ферменты
- Современная классификация ферментов и их номенклатура
- Номенклатура ферментов.
- Механизм действия ферментов
- Кинетика ферментативных реакций
- Специфичность действия ферментов
- Регуляция активности ферментов.
- Методы регуляции активности ферментов
- Витамины
- По механизму действия антивитамины делятся на 2 группы:
- Пути метаболизма витаминов в организме.
- Жирорастворимые витамины.
- Водорастворимые витамины.
- Витаминоподобные вещества.
- Введение в метаболизм
- Современные представления о дыхательной цепи переноса электронов. (эпц).
- Общие и специфические пути катаболизма
- Цикл трикарбоновых кислот.
- Обмен углеводов
- Амилопектин амилоза
- Синтез и распад гликогена
- Гликоген
- Синтез глюкозы из глицерина
- Механизм фосфорилитического отщепления остатка глюкозы от гликогена.
- Гликолиз
- 1 Стадия
- 2 Стадия