Биоэлектрические потенциалы. Потенциалы покоя и действия
Электрические потенциалы устанавливаются на клеточных мембранах возбудимых клеток. К возбудимым клеткам относятся нервные, мышечные и железистые клетки. Электрический импульс может передаваться вдоль мембраны.
Возникновение биоэлектрических потенциалов определяется, главным образом, калий – натриевой избирательностью мембран и неравномерным распределением ионов между клеткой и внеклеточной средой, которое поддерживается механизмами активного переноса ионов, локализованными в мембране.
Таблица 2
Ионный состав нервной клетки (ммоль/л)
Ионы | Внутренняя область | Внешняя среда |
К+ | 400 | 20 |
Na+ | 50 | 440 |
Сl- | 120 | 550 |
Непроникающие органические ионы | 350 | – |
Концентрация ионов калия внутри клетки в 20 раз превышает их содержание в окружающей клеточной жидкости (табл. 2). Концентрация ионов натрия в межклеточной жидкости в 9 раз выше, чем внутри клетки. Наличие разности концентраций ионов по обе стороны мембраны клетки приводит к установлению мембранного потенциала.
Мембранные потенциалы клеток подразделяются на потенциалы покоя и потенциалы действия.
F Потенциал покоя – мембранный потенциал, возникающий между внутренней и наружной сторонами клеточной мембраны, находящейся в невозбужденном состоянии.
Согласно теории Ходжкина-Хаксли-Катца клеточная мембрана в состоянии покоя проницаема в основном для ионов калия. Ионы калия диффундируют по градиенту концентраций через клеточную мембрану в окружающую жидкость, анионы не могут проникать через мембрану и остаются на ее внутренней стороне, поэтому внутренняя поверхность мембраны имеет отрицательный заряд, а внешняя – положительный. Если принять, что потенциал покоя определяется диффузией только ионов калия из цитоплазмы наружу, то его величина может быть найдена из уравнения:
Измеренное значение потенциала покоя во многих случаях соответствует вычисленному по уравнению Нернста. В некоторых случаях между измеренной и вычисленной величинами имеются значительные отличия. Это объясняется тем, что на величину потенциала покоя оказывает влияние диффузия ионов натрия.
Если имеются два проникающих через мембрану иона, K+ и Na+, то мембранный потенциал рассчитывается по уравнению Гольдмана:
где Р –проницаемость мембраны для иона.
Мембраны нервных клеток в состоянии покоя примерно в 100 раз более проницаемы для ионов K+, чем для ионов Na+; P(K+)/P(Na+) = 100.
Исходя из данных, приведенных в таблице 2, при 310 К получим:
Это значит, что между внутренней и внешней сторонами клеточной мембраны имеется разность потенциалов –75 мВ.
Потенциал покоя у разных клеток имеет величину от –70 до –90мВ.
Если нервную клетку возбуждать электрически, химически или механически, то клеточная мембрана становится более проницаемой для ионов Na+, чем для K+ (P(K+)/P(Na+) = 1/12).
Ионы Na+ движутся внутрь клетки, что приводит к изменению величины мембранного потенциала. Уравнение Гольдмана в этом случае имеет вид:
В течение короткого интервала времени (около 10–4 с) мембранный потенциал меняется от –75 до +50 мВ. Обращение знака заряда мембранного потенциала при движении ионов Na+ внутрь клетки деполяризует мембрану. После этого изменения мембрана вновь становится проницаемой для K+ и непроницаемой для Na+. После того, как избыток ионов Na+ будет откачан из клетки наружу в результате активного транспорта, мембранный потенциал возвращается к своему исходному значению.
F Потенциал действия – амплитуда колебания (деполяризация и реполяризация) мембранного потенциала, возникающая при возбуждении клетки (рис. 16).
Потенциал действия, генерируемый нервной клеткой, может быть передан в мышечную клетку. Например, каждому биению сердца предшествует генерация большого по величине потенциала действия. Этот потенциал действия создает ток, который удается регистрировать с помощью электродов, размещенных на грудной клетке (электрокардиография).
Рис. 16. Возникновение потенциала действия.
- Предисловие Модуль курса общей химии «Основы электрохимии. Редокс-процессы и равновесия» для студентов медицинского вуза включает следующие подразделы (модульные единицы):
- Тема: Редокс-процессы (овр) и равновесия. Редокс-потенциалы, биологическая роль
- Краткая теоретическая часть
- Классификация овр
- Составление уравнений овр
- Направление овр
- Редокс-процессы (овр) в живых организмах
- Тема: Электрическая проводимость растворов электролитов. Кондуктометрия, ее применение в медико-биологических исследованиях
- Краткая теоретическая часть. Основные понятия, определения, формулы
- Электрическая проводимость. Удельная электрическая проводимость раствора.
- Закон независимого движения ионов Кольрауша
- Кондуктометрические методы анализа
- Использование кондуктометрии в медицине
- Электролиты в организме. Слюна как раствор электролитов
- Учебно-исследовательская лабораторная работа № 1 «Определение степени и константы диссоциации уксусной кислоты кондуктометрическим методом»
- Электродные потенциалы
- Стандартный электродный потенциал
- Классификация электродов
- Поэтому водородный электрод можно использовать в качестве индикаторного для определения рН среды.
- Активная концентрация восстановленной формы больше активной концентрации окисленной формы (рис. 12 а).
- Активная концентрация восстановленной формы меньше активной концентрации окисленной формы (рис. 12 б).
- Активные концентрации окисленной и восстановленной форм равны, но электронодонорная способность восстановленной формы не совпадает с электроноакцепторной способностью окисленной формы.
- Гальванические элементы
- Определение электродных потенциалов
- Тема: Биопотенциалы (диффузионные, мембранные)
- Краткая теоретическая часть Основные понятия, определения, формулы Диффузионный потенциал
- Мембранный потенциал
- Биоэлектрические потенциалы. Потенциалы покоя и действия
- Тема: Потенциометрия, применение в физико-химических методах исследования
- Краткая теоретическая часть Основные понятия, определения, формулы
- Стеклянный водородный электрод
- Электроды сравнения
- Определение рН биологических жидкостей
- Понятие о потенциометрическом титровании
- Учебно-исследовательская лабораторная работа № 2 «Потенциометрическое определение рН биологических жидкостей»
- Тема: Электрохимическая коррозия. Возникновение гальванопар при металлопротезировании. Коррозионная стойкость конструкционных стоматологических материалов
- Краткая теоретическая часть
- Учебно-исследовательская лабораторная работа № 3 «Образование микрогальванических элементов при контакте металлов»
- Обучающие задачи с решением
- Ответ: потенциал водородного электрода в исследуемом растворе равен –0,068 в.
- Задачи для самостоятельного решения
- Теоретические вопросы для студентов стоматологического факультета
- Теоретические вопросы для студентов медико-профилактического факультета
- Приложение
- 1.Основные величины, используемые в электрохимии
- Значения предельных подвижностей ионов (uо, м2/(вс)) в водных растворах при 298 к.
- 3. Предельная молярная электрическая проводимость ионов (, Смм2моль–1)
- Значения удельных электрических проводимостей
- 5. Стандартные восстановительные (редокс) потенциалы (25оС)
- 7. Потенциалы электродов сравнения
- Литература
- Оглавление
- Окисление глюкозы