3.2.2. Вулканизация серой в присутствии ускорителей
Вулканизация серой в присутствии ускорителей называется активированной серной вулканизацией. Еще на начальных этапах изучения процесса вулканизации было замечено, что она ускоряется в щелочной и замедляется в кислой среде, а соединения, способствующие ускорению процесса, были названы ускорителями.
Неорганические основания, не растворимые в каучуке, не получили применения как ускорители серной вулканизации. В настоящее время известно несколько сотен органических соединений основного характера, способных ускорять серную вулканизацию.
Органические ускорители серной вулканизации по химической структуре относятся к различным классам органических соединений. В промышленности применяется ограниченное число ускорителей, которые относятся к следующим классам:
Производные дитиокарбаминовых кислот R2 N–C– SH.
S
Применяются моно-, ди- и тетрасульфиды (тиурамы) и соли этих кислот (дитиокарбаматы).
N
Производные 2-меркаптобензтиазола (МБТ) C6H4 C–SH.
S
Используется сам МБТ, его дисульфид и сульфенамиды.
Производные аминов. Применяются в основном производные мочевины H2N–C–NH2 и тиомочевины H2N–C–NH2,
О S
некоторые альдегидамины.
Ускорители независимо от своего химического строения разделяются на четыре группы по активности, которая оценивается по времени достижения оптимума вулканизации t90для резиновой смеси на основе НК при 143ºС:
- ультраускорители (t90= 510 мин) – некоторые дитиокарбаматы;
- ускорители высокой активности (t90= 1030) – тиурамы, тиазолы;
- ускорители средней активности (t90= 3060) – производные аминов;
- ускорители малой активности (t90= 60120) – производные аминов.
Активность определяет дозировку ускорителей. Необходимо также учитывать критическую температуру действия ускорителя – самую низкую температуру, при которой начинается его действие. Дитиокарбаматы имеют критическую температуру ниже 60ºС, что ограничивает их применение в резинах, несмотря на высокую активность. Из широко применяемых ускорителей самую низкую критическую температуру действия (110 ºС) имеет тиурам Д, самую высокую (147ºС) – альтакс.
Механизм действия ускорителей зависит от их химической природы. По существующим представлениям все ускорители по механизму действия можно разделить на две группы:
Соединения, легко распадающиеся при температуре вулканизации на свободные радикалы, которые затем активируют кольца серы и макромолекулы каучука. Это все ди-, тетра- и полисульфиды дитиокарбаминовых кислот, дисульфид и сульфенамиды МБТ.
Соединения, которые сначала образуют промежуточные комплексы (окислительно-восстановительные комплексы ускорителей и серы или ускорителей и пероксидных групп каучука). Комплексы образуются за счет подвижных атомов водорода и неподеленных пар электронов у атомов азота или серы в молекулах ускорителей. Затем при температуре вулканизации промежуточный комплекс распадается с образованием активных частиц (свободных радикалов, ионов), атакующих и молекулы серы, и макромолекулы каучука. К этой группе относятся меркаптобензтиазол и ускорители аминного типа.
- Образования и науки Российской Федерации
- Введение
- 1. Общие вопросы
- 1.1. Основные свойства резин как конструкционного материала
- 1.2. Структура и направления развития резиновой промышленности
- 1.3. Основные компоненты и рецептура резиновых смесей
- 1.4. Физико-механические испытания каучуков, резиновых смесей и резин
- 1.4.1. Методы испытаний каучуков и резиновых смесей
- 1.4.2. Методы испытаний резин
- 1.4.2.1.Определение свойств резин при статическом нагружении
- 1.4.2.2. Определение свойств резин при динамическом нагружении
- 1.4.2.3. Определение сопротивления резин истиранию
- 1.4.2.4. Определение прочности связи между резиной и резиной, резиной и другими материалами
- 1.4.2.5. Определение сопротивления резин действию внешних сред
- 2. Каучуки, применяемые в производстве резиновых изделий
- 2.1. Натуральный каучук
- 2.2. Синтетические изопреновые каучуки
- 2.3. Бутадиеновые каучуки
- 2.4. Бутилкаучук
- 2.5. Этиленпропиленовые каучуки
- 2.6. Бутадиен-стирольные каучуки
- 2.7. Бутадиен-нитрильные каучуки
- 2.8. Хлоропреновые каучуки
- 3. Вулканизующие системы
- 3.1. Основные закономерности процесса вулканизации каучуков различной природы
- 3.2.1. Взаимодействие серы с каучуком в отсутствие ускорителей
- 3.2.2. Вулканизация серой в присутствии ускорителей
- 3.2.2.1. Ускорители – производные дитиокарбаминовых кислот
- 3.2.2.2. Ускорители группы тиазолов
- 3.2.2.3. Ускорители аминного типа
- 3.2.3. Активаторы ускорителей серной вулканизации
- 3.2.4. Замедлители преждевременной вулканизации
- 3.2.5. Серные вулканизующие системы для высокотемпературной вулканизации
- 3.3 Бессерные вулканизующие системы для ненасыщенных каучуков
- 3.4. Вулканизующие системы для насыщенных каучуков
- 3.5. Вулканизующие системы для каучуков с функциональными группами
- 4. Наполнители
- 4.1. Активные наполнители
- 4.1.1. Технический углерод
- 4.1.1.1.Способы классификации технического углерода
- 4.1.1.2. Усиливающее действие технического углерода
- 4.1.1.3. Выбор марок технического углерода.
- 4.1.2. Другие типы активных наполнителей
- 4.2. Неактивные наполнители
- 5. Пластификаторы и мягчители
- 6. Защитные добавки
- Ингредиенты специального назначения
- Технологические добавки
- 9. Армирующие материалы
- Библиографический список
- Содержание
- Охотина Наталья Антониновна
- Тексты лекций
- 420015, Казань, к.Маркса, 68