Дуга переменного тока
Дуга переменного тока между угольными электродами при достаточно большой силе тока (>10 А) горит так же устойчиво, как и дуга постоянного тока. Однако при меньших токах или при использовании металлических электродов в момент приближения питающего напряжения и, соответственно,
Рис. II.5. Принципиальная схема генератора дуги переменного тока
Высоковольтные, но маломощные импульсы высокой частоты, генерируемые активатором, практически не сказываются на излучении дуги.
Импульсный характер дугового разряда переменного тока обусловливает его особенности в сравнении с дугой постоянного тока: более высокую температуру разряда и большую воспроизводимость интенсивностей спектральных линий. В отличие от дуги постоянного тока дуга переменного тока не имеет постоянной полярности. Это сказывается на характере поступления вещества в зону разряда. В дуге переменного тока в дуговой промежуток поступает вещество с каждого электрода одинаково, и концентрация возбужденных атомов распределяется примерно одинаково по высоте дугового промежутка (если оба электрода из одинакового материала).
Благодаря прерывистому горению дуги переменного тока вещество электродов поступает в зону разряда менее интенсивно, чем в дуге постоянного тока, и поэтому спектры угольной дуги переменного тока не столь богаты молекулярными полосами. Фон в спектре дуги переменного тока имеет то же происхождение, что и в дуге постоянного тока.
Концентрация вещества пробы в газовом облаке дуги зависит не только от силы тока, но и от длительности разряда и пауз переменного тока. При длительных паузах и коротких вспышках поступление материала пробы в дуговой разряд происходит менее интенсивно. Изменяя параметры высокочастотного контура (активизатора) дуги переменного тока и силу тока, можно влиять на интенсивность поступления вещества пробы в дуговой разряд. Температура электродов дуги переменного тока вследствие ее прерывистого горения несколько ниже, чем в случае дуги постоянного тока, но она достаточно высока для испарения всех материалов, которые плавятся и испаряются в дуге переменного тока. Фракционность испарения в дуге переменного тока выражена меньше, чем в случае дуги постоянного тока. Пределы обнаружения в дуге переменного тока обычно составляют 10-3 - 10-4%, воспроизводимость 5-10%.
- II. Атомно-эмиссионный спектральный анализ
- II.1. Краткая история метода
- II.2. Возбуждение спектра
- II.3. Интенсивность спектральной линии
- II.3.1. Выбор внутреннего стандарта и аналитической пары линий
- II.3.2. Эффекты взаимного влияния элементов
- II.4. Спектральные приборы
- II.5. Источники возбуждения спектра
- II.5.1. Пламя
- II.5.2. Электрические источники
- Дуга постоянного тока
- Дуга переменного тока
- II.5.3. Индуктивно - связанная плазма
- II.6. Осветительная система
- II.7. Диспергирующие элементы
- II.7.1. Светофильтры
- II.7.2 Спектральные призмы
- II.2.3. Дифракционные решетки
- II.7.4. Оптические схемы спектральных приборов
- II.8. Регистрация спектра
- II.8.1. Визуальная регистрация спектра
- II.8.2. Фотографическая регистрация спектра
- II.8.3. Фотоэлектрическая регистрация спектра
- II.8.4. Фотодиодная матрица
- II.9. Методы атомно-эмиссионного спектрального анализа
- II.9.1. Классификация спектральных приборов
- II.9.2. Подготовка образцов для спектрального анализа
- II.9.3. Качественный анализ
- Спектральные линии и пределы обнаружения при атомно-эмиссионном определении элементов на спектрографах исп-28, исп-30
- II.9.4. Полуколичественный спектральный анализ
- II.9.5. Количественный спектральный анализ
- II.9.6. Ошибки при проведении спектрального анализа