27. Твердость полимеров. Определение твердости по Бринеллю, по Роквеллу, по Виккерсу.
Метод Бринелля. Метод измерения твердости металлов. Сущность метода заключается во вдавливании шарика (стального или из твердого сплава) в образец (изделие) под действием силы, приложенной перпендикулярно поверхности образца
Метод Виккерса. Измерение твердости основано на вдавливании алмазного наконечника в форме правильной четырехгранной пирамиды в образец (изделие) под действием силы,
Метод Роквелла. Сущность метода заключается во внедрении в поверхность образца (или изделия) алмазного конусного или закалённого стального сферического наконечника.
28. Порошковые графиты производят из смеси углеродного порошка, получаемого из кокса, с каменноугольным пеком. Из приготовленной смеси формуют заготовки, которые затем подвергают двухстадийной термической обработке. температурах соответственно и.
На первой стадии термической обработки при 1000 °С, которую называют обжигом, происходит пиролиз каменноугольного пека с выделением летучих веществ, что приводит к формированию пористого углеродного каркаса между зернами наполнителя.
Вторая стадия термической обработки при 2500 °С и выше называется графитация (не путать с процессом графитизации – выделением графита в железоуглеродистых сплавах). В условиях высоких температур происходит кристаллизация углерода с формированием в нем кристаллитов графита.
29. Пирографит образуется в результате высокотемпературного разложения газообразных углеводородов или паров жидких углеводородов. Углерод в аллотропной модификации графита кристаллизуется из газовой фазы на нагретой свыше 2000 °С инертной к углероду твердой поверхности. С учетом высокой температуры нагрева в качестве такого материала обычно используют конструкционный графит.
Пирографит имеет очень низкую теплопроводность в направлении, перпендикулярном поверхности осаждения (кристаллографическое направление с кристаллита графита), что обеспечивает его высокую теплоизолирующую способность. В кристаллографическом направлении а пирографит имеет высокую теплопроводность. По прочности и химической стойкости пирографит значительно превосходит традиционные углеграфитовые материалы. В направлении а пирографит в 10 раз прочнее традиционных конструкционных графитов. Преимущества пирографита наиболее наглядно проявляются в высокотемпературной области: при высоких температурах приобретает пластичность. При температуре выше 2500 °С относительное удлинение пирографита при растяжении превышает 100%.
Пирографит сохраняет уникальную способность графита к повышению прочности при нагреве. Если прочность всех известных материалов при нагреве падает, то прочность пирографита возрастает.
В высокотемпературной области по удельной прочности пирографит в 5 раз превосходит самый тугоплавкий металл – вольфрам. В современных конструкциях пирографит используется в качестве теплозащитных покрытий высокотемпературных деталей, причем высокая прочность пирографита позволяет изготовлять из него и самонесущие детали высокотемпературной теплозащиты.
Теплозащитные свойства пирографита находят также применение в металлургии для плавки тугоплавких металлов, так как большинство из них не смачивает пирографит.
Стеклоуглерод получил свое название вследствие стекловидного излома и аморфного строения. Получают его путем пиролиза термореактивных углеводородов. Управление кристаллической структурой возможно только в ограниченных пределах и достигается путем термической обработки стеклоуглерода при температурах графитации. Стеклоуглерод, термически обработанный при температурах более 2000 °С, называют стеклографитом.
- 2. Классификация полимеров по структуре.
- 3. Классификация полимеров по молекулярной массе.
- 4. Молекулярная и надмолекулярная структура полимеров.
- 5. Типология полимеров.
- 6. Понятие о сополимерах.
- 7. Термопластичные полимеры. Примеры
- 8. Термореактивные полимеры. Примеры.
- 9. Пэнп и пэвп.
- 19. Основные разновидности промышленных полимеров и пластмасс.
- 20. Элементоорганические полимеры.
- 21. Термомеханические свойства и термомеханическая кривая.
- 22. Понятие о пластмассах.
- 23. Неорганические полимеры. Углерод. Алмаз.
- 24. Аморфные полимеры. Примеры.
- 25. Графит. Углеграфитовые материалы.
- 26. Аллотропные модификации углерода.
- 27. Твердость полимеров. Определение твердости по Бринеллю, по Роквеллу, по Виккерсу.
- 30. Графен. Фуллерены.
- 31. Слюда. Асбест.
- 32. Силикаты. Классификация. Тройная диаграмма.
- 33. Керамика. Технология керамики.
- 34. Классификация керамических материалов.
- 35. Порошковые графиты.
- 36. Керамика. Огнеупоры.
- 38. Стекло. Состав, структура.
- 41. Оптические и электрические свойства стекол.
- 42. Получение стекол.
- 44. Упрочение стекол, в т.Ч. Термическое.
- 45. Химическая стойкость стекол.
- 46. Применение стекол.
- 48. Классификация композиционных материалов (км) по виду матрицы.
- 49. Металлические матрицы км.
- 50. Полимерные матрицы км.
- 52. Классификация композиционных материалов по виду наполнителя:
- 53. Наполнители зернистые естественные.
- 54. Металлические порошки в качестве наполнителей км.
- 55. Технический углерод, аэросил в качестве наполнителей км.
- 61) Нитевидные кристаллы
- 62) Направления повышения прочности материалов
- 63) Элементарные полупроводники
- 64)Характеристика Кремния.
- 65)Характеристика Германия
- 66)67)68) Основные требования к полупроводниковым материалам.Сравнительная характеристика основных методов получения монокристаллов.Методы кристаллизации из расплава. Коэффициент сегрегации.
- 69) Метод Чохральского.
- 71) Методы кристаллизации из газовой фазы. Эпитаксия.
- 72) Формирование кремниевых эпитаксиальных пленок.
- 73) Метод получения р-n перехода
- 74) Основные подходы в планетарной технологии
- 75) Схема изготовления кремневого резистора
- 76) Бестигельная зонная плавка кремния.
- 77) Требования к подложкам. Получение защитных пленок.
- 78) Маркировка кремния. Акцепторы. Доноры. Поликристаллический кремний.
- 79) Полупроводниковые соединения. Принципы классификации.