36. Керамика. Огнеупоры.
К огнеупорам относят керамические материалы, обладающие высокими показателями жаропрочности и жаростойкости.
Основным показателем возможности использования керамического материала в качестве огнеупора служит его способность оставаться при высоких температурах в твердом состоянии, сохранение механических свойств при этом не играет решающей роли.
Огнеупоры изготовляют из сложной смеси разных компонентов, которая не имеет определенной температуры плавления. При нагреве огнеупоры размягчаются, а затем в некотором интервале температур переходят из твердого состояния в жидкое. Жаропрочность огнеупоров (способность выдерживать без разрушения механические нагрузки при высоких температурах) оценивают по температуре размягчения керамических изделий, т. е. по их огнеупорности.
К огнеупорам относят керамические материалы, имеющие температуру размягчения не ниже 1600 °С.
Работоспособность огнеупоров в условиях высоких температур зависит не только от их жаропрочности, но и от характера рабочей среды, в которой они эксплуатируются. Поэтому в характеристику огнеупоров входит также их жаростойкость в разных средах.
Огнеупоры классифицируют по минералогическому составу исходного сырья. Наиболее широкое применение получили шамотные, динасовые и алюмосиликатные огнеупоры.
Шамотные огнеупоры получают из огнеупорных глин. Порошок обожженной огнеупорной глины называют шамот. Шамот спекают с необожженной огнеупорной глиной. Огнеупорные свойства шамоту придает наличие в нем оксида алюминия Аl2O3. Огнеупорность шамота 1400 °С, он хорошо противостоит термическому удару, выдерживает резкие перепады температуры, имея повышенные пористость и газопроницаемость.
Динасовые огнеупоры получают путем обжига различных видов кремнезема (кварцевый песок, кварциты и др.). Они содержат не менее 90% SiO2. Огнеупорность динаса 1700 °С, он обладает высокой стойкостью к воздействию кислот, т.е. является кислотоупорным огнеупором.
Алюмосиликатные огнеупоры получают из кремнезема и огнеупорной глины. В процессе их технологической переработки образуется муллит, вследствие чего алюмосиликатные огнеупоры часто называют муллитовыми огнеупорами. Огнеупорность алюмосиликатов зависит от содержания в них глинозема и при его содержании 45 % достигает 1700 °С. Наличие муллита придает алюмосиликатным огнеупорам хорошую сопротивляемость воздействию кислот, а также расплавленных шлаков и стекла.
37.Строительная керамика.
Основным сырьем для производства строительной керамики служат разновидности глины, которые представляют собой водные алюмосиликаты. При замешивании с водой они образуют тестообразную массу, из которой формуют изделия, которые после обжига переходят в камневидное состояние.
Глиняный кирпич является основным строительным материалом, он получил наиболее широкое применение в строительстве.
Кирпич имеет стандартную форму и размеры 25012965 мм. По величине предела прочности на сжатие кирпич маркируют в пределах 70…300, что соответствует сж = 7...30 МПа.
Кирпич применяют преимущественно для кладки стен зданий, печей и дымовых труб.
Силикатный кирпич получают безобжиговым способом из смеси песка и извести. Смесь прессуют, затем подвергают автоклавной обработке в среде водяного пара, в результате которой кирпич твердеет.
Силикатный кирпич имеет такую же прочность и применяется для тех же целей, что и глиняный кирпич. Однако силикатный кирпич менее влагостоек и поэтому не рекомендуется для подвальных помещений и для других сооружений, контактирующих с водой. Кроме того, он не теплостоек и поэтому не используется для кладки труб и печей.
Производство силикатного кирпича, в отличие от глиняного, не требует высокотемпературного обжига, поэтому силикатный кирпич до 40% дешевле глиняного. Это является основным преимуществом силикатного кирпича перед глиняным.
Стеновые панели изготовляют в заводских условиях. Панель представляет собой облицованную кирпичом или другим видом керамики готовую строительную конструкцию.
Монтаж панелей по сравнению с кирпичной кладкой значительно ускоряет строительство и по крайней мере вдвое снижает трудовые затраты.
Керамическую плитку используют для облицовки фасадов, внутренней облицовки стен и покрытия полов.
Глиняная черепица является одним из старейших долговечных и огнестойких кровельных материалов. Однако ее производство трудоемко, поэтому производство черепицы не получило широкого развития. Черепичные покрытия крыш получили распространение в западных странах.
Фарфор и фаянс используют преимущественно для изготовления санитарно-технических изделий. Фарфор имеет плотную структуру, он практически беспорист, в отличие от фаянса, который имеет пористость.
Для придания поверхности керамических изделий плотности, твердости, гладкости и блеска их покрывают глазурью. Для ее получения на поверхность керамики наносят легкоплавкие силикаты, которые при обжиге образуют стекловидное покрытие.
Каменное литье получают переплавкой горных пород, а также металлургических шлаков и других минеральных отходов промышленных производств. Литейная технология исключает трудоемкую операцию механической обработки по приданию необходимой формы природному камню. Отливки имеют высокую прочность, непроницаемы для жидкостей, морозостойки, обладают высокой химической стойкостью и износостойкостью. В промышленном строительстве каменное литье используют в виде химически стойких плит для пола и облицовки стен зданий и сооружений, из него изготавливают детали химической аппаратуры, а также абразивостойкие трубы и желоба для химически активных сред, а также применяют в качестве электроизоляторов.
- 2. Классификация полимеров по структуре.
- 3. Классификация полимеров по молекулярной массе.
- 4. Молекулярная и надмолекулярная структура полимеров.
- 5. Типология полимеров.
- 6. Понятие о сополимерах.
- 7. Термопластичные полимеры. Примеры
- 8. Термореактивные полимеры. Примеры.
- 9. Пэнп и пэвп.
- 19. Основные разновидности промышленных полимеров и пластмасс.
- 20. Элементоорганические полимеры.
- 21. Термомеханические свойства и термомеханическая кривая.
- 22. Понятие о пластмассах.
- 23. Неорганические полимеры. Углерод. Алмаз.
- 24. Аморфные полимеры. Примеры.
- 25. Графит. Углеграфитовые материалы.
- 26. Аллотропные модификации углерода.
- 27. Твердость полимеров. Определение твердости по Бринеллю, по Роквеллу, по Виккерсу.
- 30. Графен. Фуллерены.
- 31. Слюда. Асбест.
- 32. Силикаты. Классификация. Тройная диаграмма.
- 33. Керамика. Технология керамики.
- 34. Классификация керамических материалов.
- 35. Порошковые графиты.
- 36. Керамика. Огнеупоры.
- 38. Стекло. Состав, структура.
- 41. Оптические и электрические свойства стекол.
- 42. Получение стекол.
- 44. Упрочение стекол, в т.Ч. Термическое.
- 45. Химическая стойкость стекол.
- 46. Применение стекол.
- 48. Классификация композиционных материалов (км) по виду матрицы.
- 49. Металлические матрицы км.
- 50. Полимерные матрицы км.
- 52. Классификация композиционных материалов по виду наполнителя:
- 53. Наполнители зернистые естественные.
- 54. Металлические порошки в качестве наполнителей км.
- 55. Технический углерод, аэросил в качестве наполнителей км.
- 61) Нитевидные кристаллы
- 62) Направления повышения прочности материалов
- 63) Элементарные полупроводники
- 64)Характеристика Кремния.
- 65)Характеристика Германия
- 66)67)68) Основные требования к полупроводниковым материалам.Сравнительная характеристика основных методов получения монокристаллов.Методы кристаллизации из расплава. Коэффициент сегрегации.
- 69) Метод Чохральского.
- 71) Методы кристаллизации из газовой фазы. Эпитаксия.
- 72) Формирование кремниевых эпитаксиальных пленок.
- 73) Метод получения р-n перехода
- 74) Основные подходы в планетарной технологии
- 75) Схема изготовления кремневого резистора
- 76) Бестигельная зонная плавка кремния.
- 77) Требования к подложкам. Получение защитных пленок.
- 78) Маркировка кремния. Акцепторы. Доноры. Поликристаллический кремний.
- 79) Полупроводниковые соединения. Принципы классификации.