41. Оптические и электрические свойства стекол.
Основными для технического применения стекла являются его оптические свойства.
Обычные силикатные стекла хорошо пропускают всю видимую часть спектра оптического излучения и практически не пропускают ультрафиолетовые (УФ) и инфракрасные (ИК) лучи.
Кварцевое стекло пропускает наиболее широкую полосу электромагнитных волн от УФ до ИК, т.е. воспринимаемый глазом видимый свет.
Стекла, легированные редкоземельными элементами, поглощают УФ-излучение.
При введении оксидов цинка, бора или алюминия получают стекла, пропускающие УФ-излучение. У окна с таким стеклом можно загорать.
Стекло, легированное легкими элементами (бор, бериллий, литий), пропускает рентгеновское излучение, тяжелыми элементами (свинец и др.) – задерживает.
Стекла, содержащие железо и фосфаты, задерживают тепловое ИК-излучение. Введение оксидов некоторых металлов делает стекло цветным: красный цвет – это оксиды никеля; желтый – оксиды германия; зеленый – оксиды хрома; синий – оксиды меди; фиолетовый – оксиды марганца.
Плотность стекла в зависимости от состава – 2,2... 8,0 г/см3.
Электрические свойства стекла характеризуются высокими значениями удельного электрического сопротивления. Введение оксидов тяжелых металлов свинца и бария приводит к повышению электроизоляционных свойств стекла. Они используются в электротехнической промышленности.
- 2. Классификация полимеров по структуре.
- 3. Классификация полимеров по молекулярной массе.
- 4. Молекулярная и надмолекулярная структура полимеров.
- 5. Типология полимеров.
- 6. Понятие о сополимерах.
- 7. Термопластичные полимеры. Примеры
- 8. Термореактивные полимеры. Примеры.
- 9. Пэнп и пэвп.
- 19. Основные разновидности промышленных полимеров и пластмасс.
- 20. Элементоорганические полимеры.
- 21. Термомеханические свойства и термомеханическая кривая.
- 22. Понятие о пластмассах.
- 23. Неорганические полимеры. Углерод. Алмаз.
- 24. Аморфные полимеры. Примеры.
- 25. Графит. Углеграфитовые материалы.
- 26. Аллотропные модификации углерода.
- 27. Твердость полимеров. Определение твердости по Бринеллю, по Роквеллу, по Виккерсу.
- 30. Графен. Фуллерены.
- 31. Слюда. Асбест.
- 32. Силикаты. Классификация. Тройная диаграмма.
- 33. Керамика. Технология керамики.
- 34. Классификация керамических материалов.
- 35. Порошковые графиты.
- 36. Керамика. Огнеупоры.
- 38. Стекло. Состав, структура.
- 41. Оптические и электрические свойства стекол.
- 42. Получение стекол.
- 44. Упрочение стекол, в т.Ч. Термическое.
- 45. Химическая стойкость стекол.
- 46. Применение стекол.
- 48. Классификация композиционных материалов (км) по виду матрицы.
- 49. Металлические матрицы км.
- 50. Полимерные матрицы км.
- 52. Классификация композиционных материалов по виду наполнителя:
- 53. Наполнители зернистые естественные.
- 54. Металлические порошки в качестве наполнителей км.
- 55. Технический углерод, аэросил в качестве наполнителей км.
- 61) Нитевидные кристаллы
- 62) Направления повышения прочности материалов
- 63) Элементарные полупроводники
- 64)Характеристика Кремния.
- 65)Характеристика Германия
- 66)67)68) Основные требования к полупроводниковым материалам.Сравнительная характеристика основных методов получения монокристаллов.Методы кристаллизации из расплава. Коэффициент сегрегации.
- 69) Метод Чохральского.
- 71) Методы кристаллизации из газовой фазы. Эпитаксия.
- 72) Формирование кремниевых эпитаксиальных пленок.
- 73) Метод получения р-n перехода
- 74) Основные подходы в планетарной технологии
- 75) Схема изготовления кремневого резистора
- 76) Бестигельная зонная плавка кремния.
- 77) Требования к подложкам. Получение защитных пленок.
- 78) Маркировка кремния. Акцепторы. Доноры. Поликристаллический кремний.
- 79) Полупроводниковые соединения. Принципы классификации.