1.4.2.2. Определение свойств резин при динамическом нагружении
Определение упруго-гистерезисных свойств. При замкнутом процессе нагружение – разгружение (испытуемый образец возвращается к исходному состоянию нагружения) наблюдается несовпадение кривых нагружения и разгружения и образование петли гистерезиса. Площадь петли гистерезиса является мерой рассеянной механической энергии. В приборах для определения упруго-гистерезисных свойств чаще всего реализуется ударная деформация растяжения, а сами свойства оцениваются динамическим модулем, модулем внутреннего трения и эластичностью по отскоку.
Для быстрой оценки внутреннего трения и гистерезисных свойств используется их способность упруго возвращать энергию удара. На практике применяют маятниковые упругометры (эластометры), в которых замеряется угол отскока бойка от резиновой шайбы (маятник Шоба). Эластичность по отскоку - это отношение энергии, возвращенной резиновым образцом бойку после удара - W2, к общей энергии, затраченной на удар - W1, которое пропорционально отношению высот (углов) расположения центра тяжести бойка до и после удара:
Э = W2/W1 = [(1-cos 2) / (1- cos 1)]· 100 %,
где 1 – угол падения маятника 90 или 60º; 2 – угол отскока маятника.
Для реальных резин этот показатель равен 40-60%.
Определение усталостно-прочностных свойств. Вследствие высокоэластических свойств резина обладает исключительно высокой способностью накапливать энергию при деформировании. При циклическом (динамическом) нагружении энергия, поглощенная при изменении конформаций молекул, разрушении связей между каучуком и наполнителем, между частицами наполнителя и др., выделяется в виде теплоты, что приводит к повышению температуры образца и снижению прочности материала. Это явление называется динамической усталостью или утомлением. Динамическая выносливость чаще всего оценивается числом циклов нагружения, которое образец выдерживает без разрушения в условиях динамических деформаций растяжения, сжатия, сдвига, изгиба, кручения или при их комплексном воздействии.
Испытания проводятся в разных режимах, которые характеризуются несколькими параметрами: амплитудой деформации, амплитудой напряжения, средними статическими значениями амплитуд, частотой нагружения при синусоидальном характере изменения переменных.
Наиболее распространен режим испытания, в котором задаются постоянными деформации – динамическая и статическая. Режим наиболее прост в конструктивном исполнении: эксцентриковые механизмы позволяют достичь постоянства амплитуды деформации, а предварительное растяжение образцов достигается линейным перемещением зажимов. Так работают машины для испытаний на многократное растяжение.
При испытаниях на многократное сжатие главной трудностью является исключение скольжения образца по рабочим площадкам прибора, что требует усложнения формы образца. При испытаниях на многократный сдвиг также возникают трудности с креплением образцов и созданием деформации, которая не должна быть больше половины высоты образца. В этих испытаниях чаще всего определяют температуру разогрева образца с помощью специальной игольчатой термопары.
В машинах для испытаний на многократный изгиб образцы закрепляются радиально в пазах диска, и при вращении диска каждый образец изгибается дважды за один оборот диска роликами, установленными по обе стороны диска. В машинах для испытаний на многократное кручение один зажим совершает возвратно-вращательное движение. Есть машины, в которых реализуется изгиб с кручением при перемещении одного зажима по дуге.
Во всех видах динамических испытаний процесс продолжается до появления первых трещин или выкрашивания мелких кусочков. Поэтому результатом испытания может быть также скорость разрастания трещин до определенной длины или площади. Момент появления трещины определяют визуально с помощью лупы, осматривая образцы через определенное время или число циклов нагружения. Из-за разброса показателей параллельно испытывают 12-18 образцов.
В отдельную группу выделяются динамические испытания в условиях концентрации напряжений на специально нанесенных повреждениях образцов - проколы, порезы, выемки и зигзагообразные канавки. Они называются испытаниями на сопротивление образованию и разрастанию трещин. Образцы подвергают изгибу и фиксируют скорость разрастания трещин до определенной длины или площади.
При динамических испытаниях за момент разрушения образца чаще всего принимают момент образования первой трещины, реже – момент разделения образца на части.
- Образования и науки Российской Федерации
- Введение
- 1. Общие вопросы
- 1.1. Основные свойства резин как конструкционного материала
- 1.2. Структура и направления развития резиновой промышленности
- 1.3. Основные компоненты и рецептура резиновых смесей
- 1.4. Физико-механические испытания каучуков, резиновых смесей и резин
- 1.4.1. Методы испытаний каучуков и резиновых смесей
- 1.4.2. Методы испытаний резин
- 1.4.2.1.Определение свойств резин при статическом нагружении
- 1.4.2.2. Определение свойств резин при динамическом нагружении
- 1.4.2.3. Определение сопротивления резин истиранию
- 1.4.2.4. Определение прочности связи между резиной и резиной, резиной и другими материалами
- 1.4.2.5. Определение сопротивления резин действию внешних сред
- 2. Каучуки, применяемые в производстве резиновых изделий
- 2.1. Натуральный каучук
- 2.2. Синтетические изопреновые каучуки
- 2.3. Бутадиеновые каучуки
- 2.4. Бутилкаучук
- 2.5. Этиленпропиленовые каучуки
- 2.6. Бутадиен-стирольные каучуки
- 2.7. Бутадиен-нитрильные каучуки
- 2.8. Хлоропреновые каучуки
- 3. Вулканизующие системы
- 3.1. Основные закономерности процесса вулканизации каучуков различной природы
- 3.2.1. Взаимодействие серы с каучуком в отсутствие ускорителей
- 3.2.2. Вулканизация серой в присутствии ускорителей
- 3.2.2.1. Ускорители – производные дитиокарбаминовых кислот
- 3.2.2.2. Ускорители группы тиазолов
- 3.2.2.3. Ускорители аминного типа
- 3.2.3. Активаторы ускорителей серной вулканизации
- 3.2.4. Замедлители преждевременной вулканизации
- 3.2.5. Серные вулканизующие системы для высокотемпературной вулканизации
- 3.3 Бессерные вулканизующие системы для ненасыщенных каучуков
- 3.4. Вулканизующие системы для насыщенных каучуков
- 3.5. Вулканизующие системы для каучуков с функциональными группами
- 4. Наполнители
- 4.1. Активные наполнители
- 4.1.1. Технический углерод
- 4.1.1.1.Способы классификации технического углерода
- 4.1.1.2. Усиливающее действие технического углерода
- 4.1.1.3. Выбор марок технического углерода.
- 4.1.2. Другие типы активных наполнителей
- 4.2. Неактивные наполнители
- 5. Пластификаторы и мягчители
- 6. Защитные добавки
- Ингредиенты специального назначения
- Технологические добавки
- 9. Армирующие материалы
- Библиографический список
- Содержание
- Охотина Наталья Антониновна
- Тексты лекций
- 420015, Казань, к.Маркса, 68