logo
му по химии / Денисова конспект лекций

Лекция 17. Применение полимеров

Волокна. Полимерные пленки. Пластмассы. Эпоксидные смолы. Синтетические эмали, лаки и компаунды. Полимерные клеи. Синтетические каучуки Кремнийорганические полимеры.

На основе полимеров получают волокна, пленки, резины, лаки, клеи, пластмассы и композиционные материалы (композиты).

Волокна получают путем продавливания растворов или расплавов полимеров через тонкие отверстия (фильеры) в пластине с последующим затвердеванием. К волокнообразующим полимерам относятся полиамиды, полиакрилонитрилы и др.

Полимерные пленки получают из расплавов полимеров методом продавливания через фильеры с щелевидными отверстиями или методом нанесения растворов полимеров на движущуюся ленту. Пленки используют в качестве электроизоляционного и упаковочного материала, основы магнитных лент и т.д.

Полиамиды - термопласты, содержащие в основной цепи амидогруппу -NHCO-, например, поли-ε-капрон [-NH-(CH2)5-CO-]n полигексаметиленадипинамид (найлон) [-NH-(CH2)5-NH-CO-(CH2)4-CO-]n полидодеканамид [-NH-(CH2)n-CO-]n и др. Их получают как поликонденсацией, так и полимеризацией. Полиамиды характеризуются высокой прочностью, износостойкостью, диэлектрическими свойствами, устойчивы в маслах, бензине, разбавленных кислотах и концентрированных щелочах. Применяются для получения волокон, изоляционных пленок, конструкционных, антифрикционных и электроизоляционных изделий.

Пластмассы (пластики)—материалы на основе полимеров, нахо­дящиеся в период формования изделий в вязкотекучем или высокоэластическом состоянии, а при эксплуатации—в стеклообраз­ном или кристаллическом. В пластмассе наряду с полимером могут содержаться наполнители, причем в термопластичные их вво­дят реже и в меньших количествах, чем в термореактивные. По­этому понятия термопластичный полимер, «термопласт», «плас­тик», обычно совпадают.

Основой так называемых «ненаполненных» термопластов яв­ляются полимеры, структура которых почти полностью формиру­ется при их синтезе в условиях специализированного химическо­го производства. Возможности регулирования их свойств на ста­дии изготовления изделий состоят в несущественных изменениях структуры, путем отжига или ориентации, стабилизации и пла­стификации с помощью модифицирующих добавок, изменяющих их свойства. Такими добавками к полимерам являются:

Один из основных признаков термопластов: наличие двух твердых состояний - стеклообразного и высокоэластического, и жидкого—вязкотекучего. Оба перехода - плавление и стеклова­ние являются плавными, нерезкими, и механические свойства почти непрерывно и обратимо изменяются при изменении темпера­туры.

Отмеченная выше особенность химической структуры термо­пластов определяет их свойства - гибкость цепей и возможность смены конформаций, что и объясняет существование в них ново­го высокоэластического состояния, характерного для широкого диапазона температур.

Первым термопластом, нашедшим широкое применение, был целлулоид - искусственный полимер, полученный путем перера­ботки природного -целлюлозы. Он сыграл большую роль в тех­нике, особенно в кинематографе, но вследствие исключительной пожароопасности (по составу целлюлоза очень близка к бездым­ному пороху) уже в середине XX в. ее производство упало почти до нуля.

Развитие электроники, телефонной связи, радио настоятельно требовало создания новых электроизоляционных материалов с хо­рошими конструкционными и технологическими свойствами. Так появились искусственные полимеры, изготовленные на основе той же целлюлозы, названные по первым буквам областей примене­ния этролами. В настоящее время лишь 2 ... 3% мирового про­изводства полимеров составляют целлюлозные пластики, тогда как примерно 75%—синтетические термопласты, причем 90% из них приходится на долю только трех: полистирола, полиэтилена, поливинилхлорида.

Полистирол - термопласт, получаемый радикальной полимеризацией стирола.

Это неполярный полимер, широко применяющийся в электротехнике, сохраняющий прочность в диапазоне 210 ... ... 350 К. Благодаря введению различных добавок приобретает специальные свойства: ударопрочность, повышенную теплостой­кость, антистатические свойства, атмосферостойкость, пенистость. Недостатки полистирола—хрупкость, низкая устойчивость к дей­ствию органических растворителей (толуол, бензол, четыреххло­ристый углерод легко растворяют полистирол; в парах бензина, скипидара, спирта он набухает).

Полистирол вспенивающийся широко используется как теплозвукоизоляционный строительный материал. В радиоэлектронике он находит применение для герметизации изделий, когда надо обеспечить минимальные механические напряжения, создать вре­менную изоляцию от воздействия тепла, излучаемого другими эле­ментами, или низких температур и устранить их влияние на элек­трические свойства, следовательно, — в бортовой и СВЧ-аппаратуре.

Полиэтилен [-СН2-СН2-]Л - термопласт, получаемый методом радикальной полимеризации при температуре до 320 °С и давле­нии 120—320 МПа (полиэтилен высокого давления) или при давле­нии до 5 МПа с использованием комплексных катализаторов (полиэтилен низкого давления). Полиэтилен низкого давления имеет более высокие прочность, плотность, эластичность и температуру размягчения, чем полиэтилен высокого давления. Полиэтилен - полимер с чрезвычайно широким набором свойств и использующийся в больших объемах, вследствие чего его считают королем пластмасс. Полиэтилен обладает исключительно высокой стойкостью против химической деструкции: даже за 10... 12 лет экс­плуатации прочность его снижается лишь на ¼. Благодаря хи­мической чистоте и неполярному строению полиэтилен обладает высокими диэлектрическими свойствами. Они в со­четании с высокими механическими и химическими свойствами обусловили широкое применение полиэтилена в электротехнике, особенно для изоляции проводов и кабелей.

Помимо полиэтилена общего назначения выпускаются его мно­гие специальные модификации, среди которых: антистатический, с повышенной адгезионной способностью, светостабилизированный, самозатухающий, ингибитированный (для защиты от корро­зии), электропроводящий (для экранирования).

Одним из наиболее прогрессивных методов обработки поли­этилена является радиационное сшивание, происходящее под действием пучков ускоренных электронов. Такое воздействие при­водит к существенному увеличению прочности на растяжение и модуля упругости, твердости, термостойкости и возникновению эффектов памяти и термоусаживания. Эти эффекты находят все более широкое применение в технологии. Изделие, например трубку или пакет, облучают электронами, раздувают горячим воздухом при 423 К. Затем трубку насаживают на штуцер или в пакет, упаковывают продукцию. После этого достаточно неболь­шого нагрева, и полиэтилен, «вспомнив» первоначальную форму, дает большую усадку, в результате которой образуется прочное надежное соединение трубка—штуцер, а пакет плотно облегает продукцию. Достоинство радиационной обработки состоит в том, что она не требует больших затрат энергии и не загрязняет мате­риал. Она применяется в кабельной промышленности.

Главный недостаток полиэтилена—сравнительно низкая нагревостойкость.

Полипропилен [-СН(СНз)-СН2-]п - кристаллический термопласт, получаемый методом стереоспецифической полимеризации. Обладает более высокой термостойкостью (до 120—140 °С), чем полиэтилен. Имеет высокую механическую прочность, стойкость к многократным изгибам и истиранию, эластичен. Применяется для изготовления труб, пленок, аккумуляторных баков и др.

Политетрафторэтилен (фторопласт) [-CF2-CF2-]n - термопласт, получаемый методом радикальной полимеризации тетрафторэтилена. Фторопласт - один из самых термостойких и холодостойких полимеров, сохраняет механичес­кую прочность в интервале 3 ... 600 К. Плотность — 2,2 ... 2,5 г/см3, относительное удлинение 250 ... 500%, температура разложения не менее 673 К. Удельное сопротивление (1038 ... 1020 Ом*см) мало зависит от влажности и температуры. Исключи­тельно высока его химическая стойкость, в том числе длительная к воздействию морского тумана, солнечной радиации, плесневых грибков. По отношению к большинству неорганических и органи­ческих реагентов он настолько пассивен, что методы испытаний на стойкость в этих средах отсутствуют. Фторопласт обладает также высокой радиационной стойкостью и применяется для изоляции проводов на атомных электростанциях. Такие провода можно использовать и в качестве нагревателей, погруженных не­посредственно в растворы кислот и щелочей. Они не боятся по­падания масел, керосина, гидравлических жидкостей при повы­шенных температурах и широко применяются для изоляции бор­товых авиационных кабелей. Обладают они преимуществом и при эксплуатации в разреженной атмосфере, где условия теплоотвода ухудшены. У фторопласта незначительна зависимость диэлектри­ческой проницаемости от температуры, поэтому он фазостабилен — не изменяет электрическую длину в широком диапазоне температур и частот. Негорючесть фторопласта характеризуется тем, что он способен загораться только в чистом кислороде, а это резко отличает его, например, от полиэтилена; теплота сгорания невелика—в 10 раз меньшая, чем полиэтилена; плавления при горении нет, фторопласт в пламени лишь обугливается; при горе­нии или тлении образуется немного дыма (но дым содержит ядо­витый фторфосген, поэтому при температуре выше 773 К фторо­пласт опасен); фторопласт горит в открытом пламени, но после его удаления горение прекращается, т. е. он неспособен распро­странять горение.

У фторопласта есть недостатки:

  1. Вследствие химической пассивности он также и адгезионно инертен, т.е. трудно поддается склеиванию. Однако способы пре­одоления этой инертности уже найдены. Это либо обработка в расплаве окислителей при Т>370 К, либо в плазме тлеющего разряда в кислороде. Благодаря этому выпускаются фольгированные фторопластовые пленки и пленки с односторонним лип­ким слоем.

  2. В отличие от типичных термопластов фторопласт при по­вышении температуры не переходит в вязкотекучее состояние и его нельзя перерабатывать в экструдерах. Поэтому пленку готовят значительно более дорогим методом строжки на прецизионных токарных станках.

  3. Фторопласт обладает ползучестью и плохо работает под нагрузкой. Механические свойства его могут быть улучшены пу­тем радиационного модифицирования и армирования стеклово­локном.

Поливинилхлорид [-СН2-СНС1-]n - термопласт, изготовляемый полимеризацией винилхлорида, стоек к воздействию кислот, щелочей и окислителей. Растворим в циклогексаноне, тетрагидрофуране, ограничено — в бензоле и ацетоне. Трудногорюч, механически прочен. Диэлектрические свойства хуже, чем у полиэтилена. Применяется как изоляционный материал, который можно соединять сваркой. Из него изготовляют грампластинки, плащи, трубы и др. предметы.

Эпоксидные смолы — продукт поликонденсации многоатомных соединений, включающих эпоксигруппу кольца

Благодаря высокой реакционной способности этих колец отверждение эпоксидных олигомеров можно осуществить с помощью многих соединений и таким образом варьировать температурно-временные режимы обработки и свойства пластмассы. Достоинства эпоксидов состоят в от­сутствии побочных продуктов и очень малой усадке (0,2 ... 0,5%) при отверждении, высокой смачивающей способности и адгезии к различным материалам. Механическая прочность, химическая стойкость, совместимость с другими видами смол и олигомеров (кремнийорганическими полимерами), большой выбор отвердителей и других добавок - качества, которые делают эти ма­териалы незаменимыми во многих отраслях техники. Если учесть также их высокие диэлектрические и влагозащитные свойства, ста­новится понятным, почему именно эпоксидные смолы стали основ­ным герметизирующим материалом радиокомпонентов и связующим главного слоистого пластика - стеклотекстолита. Немаловажно, что эпоксидные олигомеры могут быть очищены от примесей, а это сводит к минимуму вредное влияние на поверх­ность полупроводниковых приборов. Наконец, эпоксидные смолы (отвержденные) оптически прозрачны и широко применяются в оптоэлектронных приборах (фотоприемниках, светодиодах, оптопарах),

Свойства эпоксидных смол изменяют в широких пределах, ис­пользуя различные добавки, которые делятся на следующие группы:

Недостатки реактопластов: неприменимость в качестве диэлектриков СВЧ-техники; неполная воспроизводимость технологических свойств олигомеров так как число эпоксигрупп непостоянно, а это сказывается на тем­пературе и длительности отверждения.

Синтетические эмали, лаки и компаунды. Общая черта этих материалов состоит в том, что они образуют прочную твердую пленку, способную защищать, пассивировать поверхность изделий или придавать им товарный вид.

Компоненты современной РЭА и ее сборочные единицы - ра­диоэлектронные ячейки - имеют небольшие размеры, почти не содержат механически перемещаемых деталей, часто вскрывае­мых крышек или отверстий. Это создает возможность защищать блоки и ячейки пленкой - сплошной оболочкой из лака, эмали или компаунда. Такой способ защиты и одновременно придания прочности называют бескорпусной герметизацией. Он обладает преимуществами по сравнению с герметизацией в корпусе (деше­визна, технологичность, малые размеры, возможность полной автоматизации). Однако такие оболочки, непосредственно примы­кающие к поверхности твердотельного активного прибора или проводника и резистора, могут не только подавлять массообмен между изделием и внешней средой, но и участвовать в нежела­тельных физико-химических процессах, влияющих на работоспо­собность РЭА. В этом случае необходимо учитывать и физиче­скую, и химическую совместимости материалов, что ставит перед конструктором новые, трудные задачи.

Дестабилизирующие процессы в результате взаимодействия твердотельного прибора или элемента с атмосферой протекают обычно медленно, а их проявления неочевидны и многообразны. Среди них - коррозия пленочных и печатных проводников, элек­тромиграция, механические напряжения и деформации, обрывы внутренних проволочных соединений и др. В силу своей природы особенно чувствительны к внешним воздействиям полупроводни­ковые приборы, для защиты которых приходится использовать комбинацию материалов и методов.

Лаки — это растворы пленкообразующих веществ (лаковой основы) в летучих жидкостях. Лаковой основой могут быть при­родные искусственные или синтетические полимеры, которые после нанесения пленки и испарения растворителя в результате химических реакций окисления, полимеризации или поликонден­сации отверждаются, образуя плотное и прочное покрытие. Благодаря применению растворителей лаки мо­гут иметь меньшую вязкость, чем эмали и компаунды, и поэтому особенно пригодны в качестве пропиточных материалов. Если лак используется в виде защитной пленки, требуется, чтобы это покрытие обладало хорошей адгезией, было нехруп­ким, стойким к термоударам и нагреванию во влажной атмосфе­ре. Иногда необходимо, чтобы лаковое покрытие можно было бы пропаять для повышения ремонтоспособности изделия. Большин­ству предъявляемых требований удовлетворяют эпоксидные лаки, но недостаток их в трудностях удаления пленки при ремонте.

Эмали - пигментированные лаки. Пигментом в лакокрасоч­ном производстве называют тонкодисперсные порошки неорга­нических веществ, предназначенные для введения в лак путем растирания пасты. Обычно пигментами служат оксиды металлов, которые окрашивают покрытия и делают их непрозрачными, повышают механическую и абразивную прочность, защищают металл от коррозии. Так, эмаль, содержа­щая сурик (Рb3О4), замедляет коррозию черных металлов, окись цинка — алюминия. Пигменты в виде металлических порошков способствуют отражению света и защищают детали от перегрева при солнечном освещении. Содержание пигмен­тов в эмалях составляет 100 ... 150% от массы пленкообразую­щего полимера, поэтому они имеют меньшую, чем лаки, способ­ность проникать в трещины и поры и впитываться в волокнистые материалы. Необходимо также учитывать возможности химиче­ского взаимодействия лака и пигмента, поскольку реакционная поверхность пигмента очень велика. Эмали, как и лаки, пористы, вследствие чего могут набухать в атмосфере, содержащей пары воды, но особенно органических веществ. Вода может проникать сквозь пленки также под дейст­вием осмотического давления. Вследствие двухкомпонентной природы эмали разрушаются под внешними воздействиями быстрее, чем лаки, из-за так назы­ваемого процесса меления - разрушения с поверхности, сопро­вождающегося потерей глянца и уменьшения толщины.

Работа с эмалями и лаками осложнена из-за токсичности и пожароопасности растворителей. Значительно большей техноло­гичностью обладают эмали, в которых вместо органических рас­творителей используется вода - так называемые водноэмульсионные эмали. При работе с ними улучшаются условия труда, осуще­ствляется механизация процесса герметизации.

Компаунды - смеси полимеров с различными добавками, не содержащие летучих растворителей и отверждающиеся без вы­деления газо- или парообразных веществ. Отсюда следуют их преимущества по сравнению с лаками и эмалями - отсутствие пористости даже в сравнительно толстом слое (0,5 ... 1 мм), вы­сокая химическая стойкость и электрическая прочность. Следует отметить, что неотвержденные компаунды далеко не всегда обла­дают жизнестойкостью, достаточной для наиболее удобной орга­низации работ по принципу централизованное производство— применение готовых смесей. Необходимо иметь запас с учетом затрат времени на транспортировку, минимальная жизнестой­кость такой смеси должна быть не меньше 3 месяцев.

К сожалению, многие ценные и распространенные компаунды начинают гелировать с повышением вязкости уже через 40 ... ... 60 мин после смешения компонентов, что вынуждает готовить их на месте и в небольших количествах. Свойства компаундов определяются, прежде всего, видом поли­мерного связующего, которыми в большинстве случаев являются Фенолформальдегидные смолы, эпоксидные смолы, кремнийорганические полимеры, и особенно сложные сополимеры из тех же компонентов. Компаунды могут быть не только жидкими, но и твердыми при предварительном увеличении степени полимеризации. Но они сохраняют легкоплавкость, и разница состоит лишь в способе на­несения. Технология герметизации порошковыми (а также таблетируемыми, гранулированными) компаундами проще, а условия труда лучше, чем с применением жидких, однако оборудование сложнее, а выбор смесей с приемлемыми температурами плавле­ния и отверждения невелик. Оптически прозрачные компаунды необходимы при герметиза­ции оптоэлектронных приборов — фотоприемников, светодиодов. В производстве светодиодов компаунду иногда придают форму линз, концентрирующих световой поток.

Полимерные клеи - вещества, обладающие высокой адгезионной способно­стью, пригодные для соединения между собой материалов разных классов. При склеивании, в отличие от сварки и пайки, не тре­буется нагревать изделие до высоких температур, а высокая нагревостойкость обеспечивает возможность повторных нагревов. Соединение может обладать эластичностью, что снижает уровень механических напряжений после отверждения и обеспечивает прочность в условиях термоударов, динамических нагрузок. Клеи подразделяются на термопластические, термореактивные и резиновые. Термопластические клеи образуют связь с поверхностью в результате затвердевания при охлаждении от температуры текучести до комнатной температуры или испарения растворителя. Термореактивные клеи образуют связь с поверхностью в результате отвердевания (образования поперечных сшивок), резиновые клеи - в результате вулканизации.

В качестве полимерной основы термореактивных клеев служат фенол- и мочевиноформальдегидные и эпоксидные смолы, полиуретаны, полиэфиры и другие полимеры, термопластичных клеев - полиакрилы, полиамиды, поливинилацетали, поливинилхлорид и другие полимеры.

Универсальных клеев не существует; труднее поддаются склеиванию металлы, легче - неметаллы, за исключением непо­лярных термопластов, не подвергнутых специальной обработке. Поэтому клей, предназначенный для металлов, пригоден и для неметаллов, но гораздо реже бывает обратное. Так, эпоксидные клеи применимы для всех материалов, а не модифицированные фенолформальдегидные, кремнийорганические, поливинилацетатные (ПВА)—хорошо склеивают только неметаллы.

В клеи на основе термореактивных смол часто вводятся на­полнители и добавки, которые могут придать им следующие свой­ства: биостойкость (соединения мышьяка и ртути); негорючесть (оксид сурьмы); тиксотропность (аэросил, слюдяная мука); электропроводноcть (порошки серебра или никеля); теплопроводность (нитрид бора); способность вспениваться (фреоны, карбонаты), Следует учитывать, что при введении в состав клея наполните­лей его адгезионная способность снижается.

Химическая промышленность поставляет большое количество клеев, причем их исходное состояние может быть различным:

Клеи, предназначенные для металлов, не должны содержать анионов С1-, I-, F-, SO42-, S2-, которые способны вы­звать их коррозию. Эластичные материалы можно клеить только эластичными клеями на основе кремнийорганических полимеров. Пластмассы лучше клеить материалами, близкими по химической природе. Наконец, разнородные материалы можно склеить более надежно, если использовать не один вид клея, а два, более соот­ветствующие двум склеиваемым материалам по природе. Если соединяемые поверхности плохо подогнаны, целесообразно приме­нить вспенивающиеся клеи. Надо помнить, что оптимальная тол­щина слоя клея, обеспечивающая наиболее прочное соединение, - 0,1 ... 0,2 мм. Недостатки клеевых соединений: невысокая ме­ханическая прочность, особенно сопротивление отдиранию, высо­кое тепловое сопротивление.

Синтетические каучуки (эластомеры) получают эмульсионной или стереоспецифической полимеризацией. При вулканизации превращаются в резину, для которой характерна высокая эластичность. Промышленность выпускает большое число различных синтетических каучуков (СК), свойства которых зависят от типа мономеров. Многие каучуки получают совместной полимеризацией двух и более мономеров. Различают СК общего и специального назначения. К СК общего назначения относят бутадиеновый [-СН2-СН=СН-СН2-]n и бутадиенстирольный [-СН2-СН=СН-СН2-]n, -[-СН2-СН(С6Н5)-]n. Резины на их основе используются в изделиях массового назначения (шины, защитные оболочки кабелей и проводов, ленты и т.д.). Из этих каучуков также получают эбонит, широко используемый в электротехнике. Резины, получаемые из СК специального назначения, кроме эластичности характеризуются некоторыми специальными свойствами, например бензо- и маслостойкостью (бутадиеннитрильный СК), бензо-, масло- и теплостойкостью, негорючестью (хлоропреновый СК [-СН2-С(С1)=СН-СН2-] n), износостойкостью (полиуретановый и др.), тепло-, свето-, озоностойкостью (бутилкаучук) [-C(CH3)2-CH2-]n-[-CH2C(CH3)=CH-CH2-]m.

К наиболее применяемым относятся бутадиенстирольный (более 40%), бутадиеновый (13%), изопреновый (7%), хлоропреновый (5%) каучуки и бутилкаучук (5%). Основная доля каучуков (60-70%) идет на производство шин, около 4% - на изготовление обуви.

Кремнийорганические полимеры (силиконы)- содержат атомы кремния в элементарных звеньях макромолекул, например:

Характерной особенностью этих полимеров является высокая тепло- и морозостойкость, эластичность. Силиконы не стойки к воздействию щелочей и растворяются во многих ароматических и алифатических растворителях. Кремнийорганические полимеры используются для получения лаков, клеев, пластмасс и резины. Кремнийорганические каучуки [-Si(R2)-0-]n, например диметилсилоксановый и метилвинилсилоксановый имеют плотность 0,96—0,98 г/см3, температуру стеклования 130°С. Растворимы в углеводородах, галогеноуглеводородах, эфирах. Вулканизируются с помощью органических пероксидов. Резины могут эксплуатироваться при температуре от -90 до +300°С, обладают атмосферостойкостью, высокими электроизоляционными свойствами. Применяются для изделий, работающих в условиях большого перепада температур, например для защитных покрытий космических аппаратов и т.д.

Лекция 18. Элементы биохимии. Строение биополимеров

Биохимия. Биохимическая методология. Строение и свойства белков. Аминокислоты. Строение и свойства углеводов. Нуклеотиды. ДНК, РНК – строение, значение. Строение и свойства липидов.

Биохимия это наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности. Термин "биохимия" эпизодически употреблялся с середины XIX века, но в классическом смысле он был предложен и введен в научную среду в 1903 году немецким химиком Карлом Нейбергом.

В основе биохимической методологии лежит фракционирование, анализ, изучение структуры и свойств отдельных компонентов живого вещества. Методы биохимии преимущественно формировались в ХХ веке; наиболее распространенными являются хроматография, центрифугирование и электрофорез.

Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белки, жиры и углеводы. Автором этой классификации был известный английский химик и врач Уильям Праут. В 1828 году немецкий химик Ф. Вёлер синтезировал мочевину: сначала - из циановой кислоты и аммиака (выпариванием раствора образующегося цианата аммония), а позже в этом же году - из углекислого газа и аммиака. Тем самым впервые было доказано, что химические вещества живого организма могут быть синтезированы искусственно, вне организма.

Основные атомы, составляющие живую клетку – это углерод, водород, кислород, азот и фосфор. Конечно, в полимерах присутствуют и другие вещества (например, сера), но сейчас мы рассмотрим комбинации этих пяти элементов. Образование биополимеров возможно благодаря тому, что углерод четырехвалентен, способен образовывать 4 связи, и атомы углерода, связываясь друг с другом, могут образовывать длинные цепочки, состоящие из десятков атомов. Рассмотрим четыре вида биополимеров: белки, нуклеиновые кислоты, липиды и углеводы.

Белки

Белки состоят из мономеров – аминокислот. Каждая аминокислота имеет аминогруппу, связанную с атомом углерода, с этим же атомом связана карбоксильная группа, водород и аминокислотный остаток. Такая конфигурация присутствует во всех аминокислотах. Аминогруппа может быть присоединена к первому за карбоксильной группой атому углерода, или ко второму атому и т.д. Атомы нумеруются греческими буквами, и в зависимости от того, к какому по порядку атому присоединена аминокислота, ее называют альфа-аминокислота, или бета-аминокислота и т.д. В состав белков входят только альфа-аминокислоты.

Карбоксильная группа имеет кислотный характер, она диссоциирует на ионы в водном растворе с образованием протона и отрицательно заряженной группы СОО¯, NH2-группа имеет основной характер, она способна присоединять протон водорода, становясь положительно заряженной. В молекуле аминокислоты протон от карбоксильной группы может переноситься на аминогруппу – такие образования называются цвиттер-ионы. В растворе аминокислоты находятся в виде цвиттер-ионов.

Молекулы аминокислот могут отличаться в своей пространственной конфигурации. Это явление называется стереизомерией. Эти молекулы называются D- изомерами и L- изомерами. Молекулы являются зеркальным отображением друг друга. На плоскости тот атом, который находится ближе, перед плоскостью, изображается треугольной стрелкой, тот, что дальше, за плоскостью – пунктирной линией.

В живом организме все аминокислоты – L–изомеры. D-изомеры встречаются довольно редко и имеют определенные функции, например, могут входить в состав антибиотиков.

Всего живая клетка использует 20 аминокислот. Они отличаются строением боковой цепи, могут быть разветвленные цепи, они могут содержать ароматические кольца. Например, у пролина второй углеродный атом израсходовал все свободные связи на ароматическую группу, и поэтому он не обладает такой подвижностью относительно группы С-С, и поэтому в белках, где есть пролин, вращение полипептидной цепи в этих участках ограниченно.

Аминокислоты

Неполярные Полярные незаряженные

Аминокислоты делят на неполярные, то есть не имеющие заряда и не имеющие групп, которые можно было бы ионизировать, полярные не заряженные и пять кислот относятся к заряженным: это две кислоты, которые содержат вторую карбоксильную группу, которая может ионизироваться и нести на себе отрицательный заряд, и три аминокислоты имеющие дополнительные аминогруппы, которые несут в растворах с собой положительный заряд и используются в белках для того, чтобы зарядить необходимые части молекулы. Изменение заряда белковой молекулы может оказать большое влияние на структуру и функцию.

Последовательность аминокислот в белке составляет его первичную структуру. Аминокислоты способны взаимодействовать друг с другом, образуя пептидную связь. При этом молекула воды уходит, а углерод соединяется с азотом – собственно пептидная связь. Понятно, что следующая карбоксильная группа может прореагировать с аминогруппой другой кислоты и таким образом образуется полипептидная цепочка, что и называется первичной структурой белка. При записи первичной структуры аминокислоты обозначают либо трехбуквенным кодом, по первым трем буквам названия, либо используют однобуквенный код. В базах данных первичная структура белка записывается обычно однобуквенным кодом.

В зависимости от того, какие аминокислоты образовали цепочку, он может свернуться в пространстве и принять ту или иную пространственную структуру, которая называется вторичной структурой белка. Полипептидная цепочка сворачивается в пространстве в различные структуры, например спираль с определенными характеристиками, с определенным шагом (α-спираль), или вытянутую структуру (β-структура). β–спирали могут взаимодействовать между собой, образуя целые белковые листы. α-спирали образуют достаточно жесткие цилиндрические структуры. На рисунках альфа-спирали изображаются или как спиральные ленты или как цилиндры, а бета-структуру изображаются как плоские полосы.

α-спираль β-структура

Рис. 17. Вторичная структура полипептидной цепи

В формировании вторичной структуры принимают участие гидрофобные взаимодействия, ионные взаимодействия, водородные связи и ковалентные связи.

Гидрофобные взаимодействия. Как уже было сказано выше, существуют полярные и неполярные аминокислоты. Если в полипептидной цепи рядом находятся гидрофобные аминокислоты (неполярные), то в водном растворе нерастворимые в воде гидрофобные участки постараются уйти от взаимодействия с водой, свернуться так, чтобы оказаться рядом и укрыться от воды, образовать структуру с минимальной потенциальной энергией. Если рядом находятся заряженные аминокислотные остатки, то они будут притягиваться в случае разноименных зарядов или отталкиваться в случае одноименных зарядов. Поэтому первичная структура белка, то есть, наличие гидрофобных или заряженных участков на полипептидной цепи, определяет то, как этот белок свернется. Или, если, к примеру, имеется пролин, то он будет держать соседние атомы под определенным углом, определяя тем самым их положение в пространстве.

Расположение элементов вторичной структуры (альфа-спиралей и других элементов) в пространстве относительно друг друга называется третичной структурой белка.

Но, кроме того, что сам белок при попадании в водный раствор примет ту конформацию, в которой он должен работать, в клетке еще есть белки, которые называются шапероны (от слова shape - форма), которые помогают другим белкам правильно сворачиваться. Если белки сворачиваются неправильно, то это может иметь катастрофические последствия. Несколько лет назад в Европе была эпидемия коровьего бешенства, и большое количество коров пришлось уничтожить. Коровье бешенство (губчатая энцефалопатия – мозг животного становится похож на губку) вызывается не вирусом и не бактерией, а особым клеточным агентом – неправильно свернутым белком. Этот белок приводит к образованию в клетке конгломератов, то есть, белки буквально выпадают в осадок, и жизнь клетки нарушается, прежде всего, влияя на нервную систему. Это происходит потому, что белки, которые в норме в клетке взаимодействовали бы с этим белком, не могут этого сделать, так как он свернут неправильно, и поэтому клетка начинает неправильно функционировать. Таким образом, это болезнь неправильно свернутых белков. Эта эпидемия разразилась после того, как стали применять новую технологию переработки костной муки. При более низких температурах белки из костей больных животных, которые после переработки шли в качестве добавки к корму, перестали уничтожаться, а стали попадать в корм, вызвав тем самым эпидемию. Каким же образом неправильно свернутые белки попадают из пищеварительного тракта в мозг? Оказывается, что клеточные механизмы (ферменты протеазы), которые уничтожают отработанные белки, этот белок «угрызть» не могут. И прионные белки, не меняясь, могут очень долго сохраняться в организме. К тому же, некоторые белки устойчивы к воздействию температур. У людей есть аналог этой болезни. Это инфекционное заболевание называется куру. Оно описано у народов, имеющих привычку съедать мозги умерших предков (из уважения к последним). В них как раз и находились инфекционные белки. Это так называемая медленная инфекция (белок ведь, в отличие от вируса, не размножается, а постепенно высаживает на себя другие клеточные белки, распространяя вокруг себя плохую «привычку» неправильно сворачиваться). Есть схожая болезнь у овец скрейпи (характер такой же, просто дело в другом белке). И еще есть наследственное заболевание, которое называется синдром Крейтцфельда-Якоба. В одном из белков, который функционирует в мозгах, происходит мутация. В других клетках этот белок также есть, но просто, в первую очередь, нарушения сказываются на нервных тканях, так как они эволюционно самые молодые, и поэтому наиболее чувствительны к любым нарушениям в функционировании клетки. Эта мутация не позволяет белку правильно свернуться, и поэтому у человека развиваются все те же симптомы, что и при коровьем бешенстве у животных. Сейчас по первичной структуре белка можно предсказать многие элементы его вторичной структуры, то есть, как белок свернется.

На рисунке представлена первичная структура белка аполипопротеина Е, он занимается транспортом холестерина, это человеческий белок. На рисунке однобуквенным кодом записана последовательность аминокислот (первичная структура).

Рис. 18. Аполипопротеин Е человека

Под первичной структурой представлена вторичная структура белка, альфа-спиральные участки обозначены прямоугольниками. Над ними указаны номера аминокислот (белок состоит из 299 аминокислот). Пунктиром обозначен участок, который во время функционирования белка то расплетается, то опять сворачивается. Ниже показана третичная структура белка, то есть то, как спирали расположены в пространстве и взаимодействуют друг с другом. У белка есть N – конец, это та часть, на которой находится аминогруппа. Та сторона, на которой находится карбоксильная группа, называется соответственно С-конец.

Есть мутация в этом белке, которая меняет заряд одной аминокислоты. В результате меняются ионные взаимодействия внутри молекулы белка. Это меняет сродство белка к липидам разных классов. В результате повышается вероятность развития старческого слабоумия, называемого болезнью Альцгеймера. На этом примере, хорошо видно, как изменение одной единственной аминокислоты может повлиять на функции белка.

Рис. 19. Молекулярная природа нарушения работы аполипопротеина Е

Разрушение солевого мостика меняет взаимодействие субъединиц белка и тип связываемых липидов (изоформа АроЕ4 – х10 риск болезни Альцгеймера). На рисунке показано, как свернут белок. Arg-61, положительно заряженный, взаимодействует с отрицательно заряженной глутаминовой кислотой. Тут образуется своеобразный мостик. Слева на рисунке представлен белок, который отличается одной мутацией от белка, изображенного справа. В нем происходит одна аминокислотная замена. Вместо нейтрального, незаряженного цистеина появляется положительно заряженный аргинин (Arg-112), с которым начинает взаимодействовать с отрицательно заряженной глутаминовой кислотой (Glu-109), так как он расположен к глутаминовой кислоте ближе, чем аргинин-61. Исчезает солевой мостик. Меняются взаимодействия внутри белка. Это приводит к тому, что меняет сродство к липидам. Его функция заключается в переносе липидов. И он, вместо липопротеинов более высокой плотности, начинает иметь большее сродство полипротеинами меньшей плотности. У людей с такой мутацией более высокий уровень холестерина и выше уровень риска развития старческого слабоумия. Кстати, помимо физической нагрузки, профилактикой развития старческого слабоумия является умственная работа. Примерно 15% европейцев имеют такую мутацию, у бушменов же это число достигает 40% . Но им этот белок ничуть не мешает, а старческого слабоумия у них не бывает вообще, так как у них низко холестериновая диета и много физических нагрузок. Им этот белок даже полезен, так как холестерин им нужно запасать. У людей же с западной «диетой» большое содержание жиров, и «жадный» вариант белка, дающий высокий уровень холестерина, становиться вредным. Холестерин нужен, но его не должно быть ни слишком много, ни слишком мало. Таким образом, проявление изменений в первичной структуре белка зависит от образа жизни.