logo
Учеб

1.3.2. Окисляемость, или химическое потребление кислорода (хпк)

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая. Наиболее высокая степень окисления достигается методами бихроматной и иодатной окисляемости воды.

Окисляемость выражается в миллиграммах кислорода, пошедшего на окисление органических веществ, содержащихся в 1 дм3 воды.

Состав органических веществ в природных водах формируется под влиянием многих факторов. К числу важнейших относятся внутриводоемные биохимические процессы продуцирования и трансформации, поступления из других водных объектов, с поверхностными и подземными стоками, с атмосферными осадками, с промышленными и хозяйственно-бытовыми сточными водами. Образующиеся в водоеме и поступающие в него извне органические вещества весьма разнообразны по своей природе и химическим свойствам, в том числе по устойчивости к действию разных окислителей. Соотношение содержащихся в воде легко- и трудноокисляемых веществ в значительной мере влияет на окисляемость воды в условиях того или иного метода ее определения.

В поверхностных водах органические вещества находятся в растворенном, взвешенном и коллоидном состояниях. Последние в рутинном анализе отдельно не учитываются, поэтому различают окисляемость фильтрованных (растворенное органическое вещество) и нефильтрованных (общее содержание органических веществ) проб.

Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами и соединениями биогенных элементов, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 дм3), исключение составляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2–3 мг О/дм3, реки равнинные – 5–12 мг О/дм3, реки с болотным питанием – десятки миллиграммов на 1 дм3.

Окисляемость подвержена закономерным сезонным колебаниям. Их характер определяется, с одной стороны, гидрологическим режимом и зависящим от него поступлением органических веществ с водосбора, с другой – гидробиологическим режимом.

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость; в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм3; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм3.

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока (табл. 18).

Для вычисления концентрации углерода, содержащегося в органических веществах, значение ХПК (мг О/дм3) умножается на 0,375 (коэффициент, равный отношению количества вещества – эквивалента углерода к количеству вещества – эквивалента кислорода).

Таблица 18

Величины ХПК в водоемах с различной степенью загрязненности [1]

Степень загрязнения (классы водоемов)

ХПК, мг О/дм3

Очень чистые

1

Чистые

2

Умеренно загрязненные

3

Загрязненные

4

Грязные

5–15

Очень грязные

>15

Присутствующие в воде органические соединения могут претерпевать не только аэробное биохимическое окисление в ре­зультате жизнедеятельности бактерий, используемое при опреде­лении БПК. При наличии в пробе воды сильных окислителей и соответствующих условий протекают химические реакции окисления органических веществ, причем характеристи­кой процесса химического окисления, а также мерой содержания в пробе органических веществ является потребление в реакции кислорода, химически связанного в окислителях. Показатель, ха­рактеризующий суммарное содержание в воде органических ве­ществ по количеству израсходованного на окисление химически связанного кислорода, называется химическим потреблением кислорода (ХПК). Являясь интегральным (суммарным) показате­лем, ХПК в настоящее время считается одним из наиболее инфор­мативных показателей антропогенного загрязнения вод. Этот по­казатель, в том или ином варианте, используется повсеместно при контроле качества природных вод, исследовании сточных вод и др. Результаты определения окисляемости выражаются в милли­граммах потребленного кислорода на 1 л воды (мгО/л).

Однако не все органические вещества в равной степени уча­ствуют в реакции химического окисления. Так же, как и при биохи­мическом окислении, при химическом окислении можно выделить группы легко, нормально и тяжело окисляющихся органических веществ. Поэтому всегда существует разница между теоретически возможным и практически достигаемым значениями ХПК.

Теоретическим значение ХПК (ХПКтеор) называют количе­ство кислорода (или окислителя в пересчете на кислород) в мг/л, необходимое для полного окисления содержащихся в пробе орга­нических веществ, т.е. всех способных окисляться элементов из состава органического соединения. При таком окислении угле­род теоретически количественно окисляется до СО2, а сера и фос­фор (если они присутствуют в соединении) – до SО3 и Р2О5. Азот превращается в аммонийную соль; кислород, входивший в со­став окисляемых органических молекул, является «строительным материалом» для образующихся продуктов окисления, а водород переходит в структуру Н2О или аммонийной соли.

Например, при окислении синильной кислоты и гликоля протекают реакции:

НСN+Н2О+О=NН3+СО2;

Н2NСН2СООН+ЗО=NН3+2СО22О.

Практически используемые методы определения ХПК дают результаты, близкие к ХПКтеор, но всегда отклоняющиеся в ту или иную сторону. При наличии трудно окисляющихся органических веществ их окисление за время реакции проходит не полностью, и это приводит к занижению результата. В то же время, при нали­чии в пробе неорганических восстановителей, также потребляю­щих кислород на собственное окисление, результат получается завышенный. Совместное действие обоих факторов и вызывает отклонение реального ХПК от ХПКтеор.

Таким образом, окисляемость, или ХПК, характеризует об­щее количество содержащихся в воде восстановителей (органичес­ких и неорганических), реагирующих с сильными окислителями. В качестве таких окислителей обычно используют бихромат- и перманганат-анионы, и соответственно называются основные методы определения ХПК — бихроматный и перманганатный. Следует от­метить, что результаты определения окисляемости одной и той же воды с помощью разных окислителей обычно неоднозначны из-за неодинаковой степени окисления веществ, присутствующих в воде. Результаты зависят также от свойств окислителя, его концентра­ции, температуры, рН, продолжительности окисления и др. Полу­чаемые результаты сопоставимы только в том случае, когда точно соблюдены все условия проведения анализа.

Бихроматная окисляемость позволяет получить значение ХПК, наиболее приближенное к ХПКтеор, т.е. наиболее полное окисление достигается бихроматом калия. Поэтому определение бихроматной окисляемости является основным методом опреде­ления ХПК. Именно бихроматную окисляемость часто называют «химическим потреблением кислорода». В условиях этого мето­да большинство органических соединений окисляется на 95 % и более, однако окисляются не все соединения (толуол, бензол, пи­ридин, парафин и др. практически не окисляются). Катализатором окисления является сульфат серебра, который добавляется в аналитическую рецептуру для ускорения реакции и повышения полноты окисления органических веществ. Избыток бихромата оттитровывается раствором соли Мора. Реакцию проводят в же­стких условиях – в 50 %-ной (разбавление 1:1) серной кислоте при кипячении. Содержание неорганических вос­становителей в пробе определяют отдельно специальными мето­дами и вычитают из ХПК пробы.

Бихромат при этом восстанавливается согласно уравнению:

Сг2О72-+ 14Н++6е-=2Сг3++7Н2О.

В таких условиях получаемый результат обычно составля­ет 95-98 % от ХПКтеор.

На примере окисления фталата калия бихроматом реакцию можно записать следующим образом:

2KС8Н5О4+10К2Сг2О7+41Н24=16СО2 +46Н2О+10Сг2(SО4)3+11К24

Из уравнения реакции следует, что на окисление 2 молекул фталата калия расходуется 16 молекул кислорода, связанного в бихромате. В весовом отношении ХПКтеор для 1 мг фталата ка­лия составляет 1,175 мгО.

Значения ХПКтеор (в мг кислорода на 1 мг вещества) для разных соединений, по данным [26], приведены в табл. 19.

Таблица 19