13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
Исходным материалом для носителей служит светло-серое или красновато-коричневое аморфное вещество, представляющее собой обломки панцирей микроскопических диатомовых водорослей – диатомит.
Диатомовая горная порода состоит в основном из аморфного кремнезема, содержащего от 20 до 80 % физически связанной воды.
Диатомит промывают водой, чтобы отделить загрязняющий материал, например песок, сушат и перемалывают. Прокаливанием во вращающейся печи, иногда в присутствии гидроксидов, удаляют органические соединения. Цвет диатомитов при этом изменяется, а его удельная поверхность уменьшается от 1240 (сырой продукт) до 15 м2/г.
Далее диатомит измельчают, просеивают и, если необходимо, освобождают от оксидов железа.
Из такого порошкообразного материала и готовят носитель для хроматографических колонок.
Следует различать диатомовые носители первого и второго типа.
Диатомовые носители первого типа характеризуются достаточно большой механической прочностью, величиной удельной поверхности порядка 4 м2/г, большой насыпной массой (г/см3).
Вследствие пропорциональной зависимости между удельной поверхностью и адсорбционными свойствами носителя этот недоста-ток проявляется ярче, чем у носителей второго типа. В связи с этим носители первого типа применяются преимущественно для анализа смесей углеводородов.
Представителями твердых носителей этого типа являются: стерхамол, рисорб, диатопорт, анакром, сферохром2, сферохром3, динохромN, ИНЗ600.
Диатомовые носители второго типа характеризуются величиной удельной поверхности порядка 1 м2/г, малой насыпной массой и, как следствие, малой адсорбционной активностью.
Наиболее часто в практике встречаются следующие представители этого типа носителей: кизельгур, хромосорб, целит, газохром, сферохром1, порохром, динохром, хроматон, инертон.
Модифицирование носителей. Обработка кислотами. Установлено, что неорганические загрязнения кислотами отмываются полнее, чем гидроксидами. Предварительную обработку кислотами рекомендуется проводить перед силанизацией, так как в этом случае носитель становится более инертным, чем в результате одной лишь силанизации.
Обработка кислотами (чаще всего соляной) проводится следующим образом: 100 г твердого носителя смешивают с 500 мл дистиллированной воды в стакане емкостью 1 л. Через 2 минуты взвесь мелких частиц декантируют. Процесс повторяют до удаления практически всех мелких пылевидных частиц.
Носитель отфильтровывают на воронке Бюхнера, отсасывают досуха и переносят в стакан емкостью 500 мл. Добавляют 250 мл концентрированной соляной кислоты, тщательно перемешивают, дают 2 минуты отстояться, декантируют и снова добавляют 150 мл кислоты. Смесь перемешивают и оставляют стоять на ночь.
Затем смесь тщательно взмучивают и декантируют. Декантация проводится четырежды, добавляя каждый раз 300 мл воды. Далее носитель отфильтровывают на воронке Бюхнера, промывают водой до нейтральной реакции, отсасывают досуха и сушат при 150 оС на воздухе в течение суток.
Обработка гидроксидами. Обработку гидроксидами диатомовых носителей следует проводить при разделении основных соединений аминов, диаминов, пиридинов, хинолина, гуанидина, метиламина, эпоксипроизводных.
Отмечено, что обработка гидроксидами разрушает каталитические центры носителя и снижает их активность.
На практике твердый носитель тщательно пропитывают метанолом и полученную массу перемешивают с 6-процентным метанольным раствором гидроксида в течение часа в роторном испарителе без нагревания. Затем отгоняют в вакууме растворитель, и высушенный продукт просеивают.
При использовании обработанных гидроксидами носителей в практике следует учитывать способность свободных гидроксидов разлагать или адсорбировать многие из разделяемых соединений.
Обработка силанизирующими реагентами. Свободные группы Si-OH, расположенные на поверхности носителя, оказывают мешающее действие, особенно в тех случаях, если на носитель нанесено очень небольшое количество неподвижной жидкой фазы или если жидкая фаза почти неполярна, а разделяемые соединения характеризуются значительной полярностью.
Остаточную активность носителя можно снизить еще в большей степени, если провести замещение атома водорода в группах Si-OH на органосилильные радикалы.
Одним из вариантом модифицирования поверхности является обработка носителя диметилдихлорсиланом или триметилхлорсиланом:
SiOH + (CH3)3SiCl SiOSi(CH3)3 + HCl.
Силанизация гексаметилдисилазаном протекает по схеме:
SiOH + (CH3)3SiNHSi(CH3)3 SiOSi(CH3)3 + (CH3)3SiNH2
SiOH + (CH3)3SiNH2 SiOSi(CH3)3 + NH3
(CH3)3SiNHSi(CH3)3 + H2O (CH3)3SiOSi(CH3)3 + NH3.
Последнее уравнение уравнение медленно протекающей побочной реакции.
В результате проведения силанизации удельная поверхность носителя может несколько снизиться, однако если сам исходный диатомит малоактивен, то силанизация позволяет получить носитель, пригодный для эффективного разделения большинства смесей.
У таких носителей имеется лишь один недостаток: так как покрытая кремнийорганическим соединениями поверхность носителя оказывается гидрофобной, она слабее удерживает такие полярные неподвижные жидкие фазы, как глицерин или диглицерин, в результате чего на таких неподвижных жидких фазах, прежде всего при повышенных загрузках колонок, эффективность разделения невелика.
Отмытые кислотой, гидроксидами и силанизированные носители специальным образом маркируются. Например, носитель газохром-Q ABW-DMCS промыт кислотой, гидроксидом, водой и обработан диметилхлорсиланом.
- Предисловие
- Введение
- 1. Хроматографические методы
- 1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- Изотермы адсорбции
- Изотермы адсорбции и форма фронтов зон
- 1.3 Теория теоретических тарелок
- 6.2. Оценка параметров эффективности и селективности хроматографической колонки
- 6.5. Степень разделения и ее связь с параметрами
- Влияние условий анализа на эффективность разделения
- 7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- 8. Влияние температуры на параметры процесса разделения
- 1.5. Газовая хроматография
- 3.2. Газовый хроматограф. Принципиальная схема
- Устройства ввода пробы в хроматограф
- Ввод пробы
- 9.2. Чувствительность детектора. Предел обнаружения
- 9.3. Линейность детектора
- 9.4. Селективность детектора
- 1.3.5.1. Детекторы по теплопроводности
- 1.3.5.3. Пламенно-ионизационный детектор
- Значения инкрементов функциональных групп и связей
- Величины относительных молярных поправочных коэффициентов
- 1.3.5.4. Детектор электронного захвата
- 1.3.5.5. Детектор ионизационно-резонансный
- 1.5.5.6. Термоионный детектор
- 1.3.5.9.Фотоионизационный детектор (дфи)
- 3.1. Варианты метода газовой хроматографии
- Силы дисперсионного взаимодействия
- Силы индукционного взаимодействия
- Силы ориентационного взаимодействия
- Силы полухимического и химического взаимодействий
- 12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по особенностям внутренней геометрической структуры
- 12.4. Важнейшие адсорбенты и характеристика их свойств
- Углеродные адсорбенты
- Адсорбенты с большим содержанием кремниевой кислоты
- Оксид алюминия
- Органические сорбенты
- 12.5. Приложение теории адсорбции к газовой хроматографии
- 12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- 13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- Стеклянные микрошарики
- Силикагель
- Оксид алюминия
- Политетрафторэтилен
- 13.3. Неподвижные жидкие фазы
- Химическая активность
- Давление паров и термостойкость
- Размеры молекул
- Вязкость
- Способность к растворению разделяемых соединений
- Разделительные свойства
- 13.4. Классификация неподвижных жидких фаз
- Шкала относительной полярности неподвижных жидких фаз
- Классификация неподвижных жидких фаз по индексам удерживания Ковача
- Классификация неподвижных жидких фаз по веществам-стандартам
- Классификация неподвижных жидких фаз Мак-Рейнольдса
- 13.5. Важнейшие неподвижные жидкие фазы
- Неароматические углеводороды
- Ароматические углеводороды
- Силиконы
- Фенилсиликоны
- Спирты, эфиры и производные углеводов
- Полигликоли
- Ароматические простые эфиры
- Сложные эфиры
- 7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- 7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- 4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- 3. Жидкостная хроматография
- Основное оборудование для тсх
- Техника эксперимента в тсх
- Сверхкритическая флюидная хроматография
- Критические величины для подвижных фаз в сфх
- 2. Свойства сверхкритических флюидов, используемые
- 4. Приборное оформление
- 5. Современные задачи сфх с насадочными колонками
- 6. Заключение
- 6. Капиллярный электрофорез Введение
- Принятые термины и сокращения
- Физико-химические основы метода капиллярного электрофореза
- Основные варианты капиллярного электрофореза
- Аппаратура Общее устройство систем кэ
- Капилляры
- Источники высокого напряжения
- Ввод пробы
- Детекторы
- Системы термостабилизации. Сбор и обработка данных
- Эффективность разделения
- Чувствительность метода
- Разрешение и селективность разделения
- Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- Количественная обработка результатов анализа
- Объекты для анализа методом кэ. Подготовка пробы
- Электрофореза и примеры использования Анализ объектов окружающей среды.
- Анализ неорганических анионов с обращением эоп (рис. 9)
- Анализ неорганических анионов без обращения эоп (рис. 9)
- Анализ неорганических катионов в яблочном соке (рис. 9)
- Анализ ионного состава воды. Определение неорганических
- Особенности методики, практические рекомендации
- В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- 1.9. Качественный хроматографический анализ
- 5. Количественный анализ
- 11.1. Параметры пика как характеристика количества вещества
- Параметр h
- Параметр hl
- Параметр а
- Величины допустимых погрешностей задания параметров разделения
- 5.3.1 Методы триангуляции
- 7. Практическое использование хроматографии в контроле качества продукции