4. Приборное оформление
Современная сверхкритическая флюидная хроматография с насадочными колонками — ближайшая родственница ВЭЖХ как в отношении химических и технических приемов, используемых для достижения желаемых результатов, так и в плане приборного оформления. СКФ-хроматограф состоит из насосного блока, колоночного термостата, автосамплера, одного или нескольких детекторов, регулятора давления (back-pressure regulator, BPR, БПР) и системы сбора фракций. Двумя принципиальными техническими отличиями СФХ-систем от ВЭЖХ являются: 1) необходимость контроля давления на всем протяжении пути от насосов до выхода из детектора, осуществляемая регулятором давления БПР, и 2) необходимость охлаждения головок насоса СО2 для предотвращения перехода диоксида углерода в газовую фазу. Первое требование обычно удовлетворяется установкой охлаждающей системы, в которую включается блок предварительного охлаждения жидкого диоксида углерода после выхода из источника перед попаданием в поршневые камеры насоса и охлаждение самих камер. Это может осуществляться либо с использованием охлаждающего циркуляционного термостата с антифризом, либо с помощью элемента Пельтье. Второе требование выполняется встраиванием в контур автоматического регулятора давления на выходе потока из детектора. Существует много различных вариаций БПР. Наибольшее распространение получили системы, базирующиеся на линейных игольчатых клапанах тонкой регулировки, управляемые с помощью мотора. Ряд дополнительных технических особенностей приборов для СФХ — наличие возможности ввода пробы в поток модификатора до смешения его с диоксидом углерода в случае препаративного разделения веществ высокой полярности; необходимость установки УФ-детекто-ров, снабженных смотровой ячейкой высокого давления; наличие камеры смешения потоков флюида и сорастворителя, выполняющей также функцию демпфера пульсаций потока, — не являются непривычными для производителей хромато-графического оборудования, поскольку схожие задачи приходится решать и при конструировании иных типов приборов.
Меры предосторожности при работе с СФХ также во многом схожи с ВЭЖХ. Использование нетипичных, химически агрессивных либо чересчур вязких сора-створителей может привести к повреждению насосов. При температурах существенно выше комнатной (>60 °C) могут пострадать колонки. Единственной отличительной особенностью техники безопасности СФХ по сравнению с иными хроматографическими методами является обращение с эффлюентом. После БПР СО2, теряя давление, адиабатически расширяется примерно в соотношении 1 : 500, что приводит к формированию сильного потока газа с каплями сорастворителя и аналита в нем, а также резко охлаждается благодаря эффекту Джоуля—Томсона.
Поэтому поток эффлюента в СФХ сначала пропускают через газо-жидкостный сепаратор либо уловитель жидкости, в случае препаративной хроматографии нагревают и только после этого направляют на систему сбора фракций. В противном случае вести количественный сбор очищенного продукта становится весьма затруднительно вследствие выпадения большой части выделенного продукта на охлаждаемом благодаря адиабатической декомпрессии участке пути и формирования аэрозоля в сборнике ввиду высокой скорости потока газообразного диоксида углерода.
Насадочная СФХ обычно считается нормально-фазовой техникой, поскольку в ней используется неполярная подвижная фаза и полярные сорбенты. И действительно, большинство приложений, для которых используется эта техника, ранее решались с помощью нормально-фазовой ВЭЖХ. СФХ фактически послужила основой для возрождения нормально-фазовой хроматографии, так как до масштабного внедрения СФХ в лабораторную практику нормально-фазовая ВЭЖХ постепенно теряла популярность и вытеснялась более популярной обращенно-фазовой хроматографией. Это вызвано целым рядом причин, среди которых:
губительное воздействие на разделение даже небольших количеств воды в системе;
очень большие времена установления равновесных условий;
трудности с осуществлением градиентных методик;
генерация большого количества токсичных и взрывоопасных жидких отходов при проведении препаративных разделений;
невысокие растворяющие способности доступных элюентов.
Как следует из изложенного выше, насадочная СФХ полностью свободна от всех этих сложностей, поэтому нормально-фазовая хроматография вновь вернулась в активную производственную практику с появлением СФХ. Произошедший в 90-е годы переход от насосов, контролирующих рабочее давление в системе, и пассивных рестрикторов к насосам, контролирующим скорость потока флюида, и автоматическим БПР позволил реализовать градиентное элюирование с вариацией содержания сорастворителя в подвижной фазе. При этом рост вязкости по мере роста процента сорастворителя компенсируется падением линейной скорости потока при сохранении эффективности разделения в ходе градиентного элю-ирования. 0днако сверхкритическая хроматография не ограничена этой областью. 0дним из замечательных проявлений двойственной природы полярности диоксида углерода является тот факт, что перевод между НФ и 0Ф режимами осуществляется простой сменой колонки при сохранении подвижной фазы. На рис. 6 приведен пример использования СФХ в обращенно-фазовом режиме для разделения смеси олигомеров полиэтилена массами вплоть до С84, достигнутого всего за 7 минут [9]. При этом в СФХ наибольшее влияние на удерживание разделяемых компонентов в обоих режимах оказывает природа подвижной фазы, поскольку в ней отсутствует вода, практически не смешивающаяся с СК-С02. Вода нивелирует слабые межмолекулярные взаимодействия, при наличии ее в элюенте механизмы удерживания преимущественно определяются способностью к участию в водородных связях. В СФХ больший вклад в удерживание дают более слабые диполь-дипольные, к—к, поляризационные и иные типы взаимодействий. 0тчасти поэтому на настоящий момент количество сорбентов, применяемых в СФХ, значительно превышает таковое в ВЭЖХ и разрыв продолжает расти, так как поиск механизмов удерживания и разделения, равно как и способов их реализации в хроматографии, продолжается [10].
- Предисловие
- Введение
- 1. Хроматографические методы
- 1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- Изотермы адсорбции
- Изотермы адсорбции и форма фронтов зон
- 1.3 Теория теоретических тарелок
- 6.2. Оценка параметров эффективности и селективности хроматографической колонки
- 6.5. Степень разделения и ее связь с параметрами
- Влияние условий анализа на эффективность разделения
- 7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- 8. Влияние температуры на параметры процесса разделения
- 1.5. Газовая хроматография
- 3.2. Газовый хроматограф. Принципиальная схема
- Устройства ввода пробы в хроматограф
- Ввод пробы
- 9.2. Чувствительность детектора. Предел обнаружения
- 9.3. Линейность детектора
- 9.4. Селективность детектора
- 1.3.5.1. Детекторы по теплопроводности
- 1.3.5.3. Пламенно-ионизационный детектор
- Значения инкрементов функциональных групп и связей
- Величины относительных молярных поправочных коэффициентов
- 1.3.5.4. Детектор электронного захвата
- 1.3.5.5. Детектор ионизационно-резонансный
- 1.5.5.6. Термоионный детектор
- 1.3.5.9.Фотоионизационный детектор (дфи)
- 3.1. Варианты метода газовой хроматографии
- Силы дисперсионного взаимодействия
- Силы индукционного взаимодействия
- Силы ориентационного взаимодействия
- Силы полухимического и химического взаимодействий
- 12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по особенностям внутренней геометрической структуры
- 12.4. Важнейшие адсорбенты и характеристика их свойств
- Углеродные адсорбенты
- Адсорбенты с большим содержанием кремниевой кислоты
- Оксид алюминия
- Органические сорбенты
- 12.5. Приложение теории адсорбции к газовой хроматографии
- 12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- 13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- Стеклянные микрошарики
- Силикагель
- Оксид алюминия
- Политетрафторэтилен
- 13.3. Неподвижные жидкие фазы
- Химическая активность
- Давление паров и термостойкость
- Размеры молекул
- Вязкость
- Способность к растворению разделяемых соединений
- Разделительные свойства
- 13.4. Классификация неподвижных жидких фаз
- Шкала относительной полярности неподвижных жидких фаз
- Классификация неподвижных жидких фаз по индексам удерживания Ковача
- Классификация неподвижных жидких фаз по веществам-стандартам
- Классификация неподвижных жидких фаз Мак-Рейнольдса
- 13.5. Важнейшие неподвижные жидкие фазы
- Неароматические углеводороды
- Ароматические углеводороды
- Силиконы
- Фенилсиликоны
- Спирты, эфиры и производные углеводов
- Полигликоли
- Ароматические простые эфиры
- Сложные эфиры
- 7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- 7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- 4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- 3. Жидкостная хроматография
- Основное оборудование для тсх
- Техника эксперимента в тсх
- Сверхкритическая флюидная хроматография
- Критические величины для подвижных фаз в сфх
- 2. Свойства сверхкритических флюидов, используемые
- 4. Приборное оформление
- 5. Современные задачи сфх с насадочными колонками
- 6. Заключение
- 6. Капиллярный электрофорез Введение
- Принятые термины и сокращения
- Физико-химические основы метода капиллярного электрофореза
- Основные варианты капиллярного электрофореза
- Аппаратура Общее устройство систем кэ
- Капилляры
- Источники высокого напряжения
- Ввод пробы
- Детекторы
- Системы термостабилизации. Сбор и обработка данных
- Эффективность разделения
- Чувствительность метода
- Разрешение и селективность разделения
- Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- Количественная обработка результатов анализа
- Объекты для анализа методом кэ. Подготовка пробы
- Электрофореза и примеры использования Анализ объектов окружающей среды.
- Анализ неорганических анионов с обращением эоп (рис. 9)
- Анализ неорганических анионов без обращения эоп (рис. 9)
- Анализ неорганических катионов в яблочном соке (рис. 9)
- Анализ ионного состава воды. Определение неорганических
- Особенности методики, практические рекомендации
- В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- 1.9. Качественный хроматографический анализ
- 5. Количественный анализ
- 11.1. Параметры пика как характеристика количества вещества
- Параметр h
- Параметр hl
- Параметр а
- Величины допустимых погрешностей задания параметров разделения
- 5.3.1 Методы триангуляции
- 7. Практическое использование хроматографии в контроле качества продукции