4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
В заключение отметим основные преимущества и недостатки варианта газо-жидкостной хроматографии.
Основные преимущества:
на неподвижных жидких фазах изотерма абсорбции линейна при обычных рабочих условиях в широком диапазоне концентраций и хроматографические пики регистрируются симметричными;
многообразие неподвижных жидких фаз позволяет выбрать достаточно селективную фазу для данного разделения;
количество неподвижной жидкой фазы в колонке можно легко изменять, изменяя тем самым параметры удерживания и селектив-ность разделений;
одна и та же неподвижная жидкая фаза может быть использована для изготовления как препаративных, так и высокоэффективных аналитических колонок;
неподвижные жидкие фазы достаточно доступны;
неподвижные жидкие фазы характеризуются высокой степенью чистоты, стабильностью свойств, что способствует получению воспроизводимых параметров удерживания.
Основным недостатком варианта газо-жидкостной хроматографии является возможная высокая летучесть и, следовательно, нестабиль- ность жидких фаз, что затрудняет анализ микропримесей, анализ при высоких температурах, анализ с программированием температуры.
2.8 Двумерная хроматография
Улучшение качества разделения компонентов смеси с использованием единственной колонки не безгранично. Во-первых, любая отдельно взятая колонка обладает определённой селективностью, то есть лучше разделяет одну группу компонентов, и хуже — другую. Во-вторых, применение всё более длинных высокоэффективных колонок приводит к увеличению продолжительности анализа. При анализе летучих веществ растительного происхождения приходится иметь дело со смесями, которые невозможно полностью разделить с использованием ни одной из самых современных колонок. В таких случаях можно использовать многомерную хроматографию — разделение на нескольких соединённых друг с другом колонок. Благодаря прогрессу в области приборостроения и изготовления колонок многомерная газовая хроматография стала широко применяться для проведения сложных анализов.
Частным случаем многомерной хроматографии является двумерная газовая хроматография (двумерная ГЖХ, англ.: 2D GC, GC х GC), которая появилась как мощный инструментальный метод исследования чуть более 10 лет тому назад [292] и которая находит всё более широкое применение в исследовании летучих растительных веществ [293]. Основные принципы и применение двумерной ГЖХ описаны в обзорах [235, 294, 292].
Общая схема функционирования системы для двумерной газовой хроматографии показана на рис. 2.6-1. Анализируемую пробу через испаритель вводят в колонку 1, в которой происходит первое разделение. Поток, выходящий из колонки, с помощью специального крана-переключателя может направляться либо в детектор 1, либо в специальную ловушку, где происходит в течение определённого времени накопление «вырезаемой» таким образом фракции, которая далее поступает в колонку 2, где происходит второе разделение. Элюат из колонки 2 подаётся в детектор 2. Очевидно, что нет смысла применять две однотипные колонки, и положительный эффект использования двумерного варианта достигается тогда, когда колонка 1 и колонка 2 различаются по селективности. Как правило, колонка 1 используется как предколонка (англ.: precolumn), на которой проводится «грубое» разделение исходной смеси и выделяется более или менее узкая фракция для последующего прецизионного анализа на" колонке 2. Предколонка, как правило, представляет собой обычную капиллярную колонку длиной 10-30 м с малополярной полисилоксановой фазой. Особое значение для исследования летучих веществ растений имеет использование в качестве колонки 2 колонки с хиральной фазой, что открывает широкие возможности прямого энантиоселективного анализа компонентов сложных смесей природных соединений [293]. Двумерная хиральная ГЖХ, благодаря прогрессу в области приборостроения и изготовления колонок, стала широко применяться для проведения анализов смесей очень большой сложности. Пример использования двумерной хираль-ной ГЖХ приведен в разделе 3.9 на с. 136.
Рис. 2.6. Принципиальная схема устройства для двумерной ГЖХ: варианты GC х GC с расположением двух колонок в одном термостате 1 и в разных термостатах 2, а также вариант GC х 2GC 3. Обозначения узлов: И — испаритель, К — колонка, Т — термостат колонок, КР — кран - переключатель потоков, Л — ловушка, Д — детектор (см. пояснения в разделе 2.8).
Что касается аппаратурного оформления процесса, то существует два принципиально различных варианта размещения предколонки и основной колонки: в одном термостате (рис. 2.6-1) и в разных термостатах (рис. 2.6-2). В настоящее время производители газо-хроматографического оборудования предлагают готовые простые решения для двумерной хроматографии в виде прибора, у которого обе колонки размещены в одном и том же термостате. Однако такая простота (и выигрыш в цене) достигается за счёт потери гибкости в настройке. Применительно к двумерной хиральной ГЖХ в подавляющем большинстве случаев предколонка и основная колонка с хиральной фазой должны работать в разных температурных режимах для достижения оптимального разделения, чего на практике невозможно достичь с использованием прибора, у которого обе колонки размещаются в одном термостате.
Эффективным комбинированным методом является также он-лайн сочетание жидкостной и газовой хроматографии (LC-GC), однако известно лишь несколько успешных примеров его применения [295].
При двумерной ГЖХ возникают проблемы с определением истинного времени удерживания и мёртвого времени в обоих измерениях, а также в вычислении индексов удерживания в условиях ввода при постоянном давлении, однако к настоящему времени предложены методы
- Предисловие
- Введение
- 1. Хроматографические методы
- 1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- Изотермы адсорбции
- Изотермы адсорбции и форма фронтов зон
- 1.3 Теория теоретических тарелок
- 6.2. Оценка параметров эффективности и селективности хроматографической колонки
- 6.5. Степень разделения и ее связь с параметрами
- Влияние условий анализа на эффективность разделения
- 7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- 8. Влияние температуры на параметры процесса разделения
- 1.5. Газовая хроматография
- 3.2. Газовый хроматограф. Принципиальная схема
- Устройства ввода пробы в хроматограф
- Ввод пробы
- 9.2. Чувствительность детектора. Предел обнаружения
- 9.3. Линейность детектора
- 9.4. Селективность детектора
- 1.3.5.1. Детекторы по теплопроводности
- 1.3.5.3. Пламенно-ионизационный детектор
- Значения инкрементов функциональных групп и связей
- Величины относительных молярных поправочных коэффициентов
- 1.3.5.4. Детектор электронного захвата
- 1.3.5.5. Детектор ионизационно-резонансный
- 1.5.5.6. Термоионный детектор
- 1.3.5.9.Фотоионизационный детектор (дфи)
- 3.1. Варианты метода газовой хроматографии
- Силы дисперсионного взаимодействия
- Силы индукционного взаимодействия
- Силы ориентационного взаимодействия
- Силы полухимического и химического взаимодействий
- 12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по особенностям внутренней геометрической структуры
- 12.4. Важнейшие адсорбенты и характеристика их свойств
- Углеродные адсорбенты
- Адсорбенты с большим содержанием кремниевой кислоты
- Оксид алюминия
- Органические сорбенты
- 12.5. Приложение теории адсорбции к газовой хроматографии
- 12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- 13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- Стеклянные микрошарики
- Силикагель
- Оксид алюминия
- Политетрафторэтилен
- 13.3. Неподвижные жидкие фазы
- Химическая активность
- Давление паров и термостойкость
- Размеры молекул
- Вязкость
- Способность к растворению разделяемых соединений
- Разделительные свойства
- 13.4. Классификация неподвижных жидких фаз
- Шкала относительной полярности неподвижных жидких фаз
- Классификация неподвижных жидких фаз по индексам удерживания Ковача
- Классификация неподвижных жидких фаз по веществам-стандартам
- Классификация неподвижных жидких фаз Мак-Рейнольдса
- 13.5. Важнейшие неподвижные жидкие фазы
- Неароматические углеводороды
- Ароматические углеводороды
- Силиконы
- Фенилсиликоны
- Спирты, эфиры и производные углеводов
- Полигликоли
- Ароматические простые эфиры
- Сложные эфиры
- 7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- 7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- 4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- 3. Жидкостная хроматография
- Основное оборудование для тсх
- Техника эксперимента в тсх
- Сверхкритическая флюидная хроматография
- Критические величины для подвижных фаз в сфх
- 2. Свойства сверхкритических флюидов, используемые
- 4. Приборное оформление
- 5. Современные задачи сфх с насадочными колонками
- 6. Заключение
- 6. Капиллярный электрофорез Введение
- Принятые термины и сокращения
- Физико-химические основы метода капиллярного электрофореза
- Основные варианты капиллярного электрофореза
- Аппаратура Общее устройство систем кэ
- Капилляры
- Источники высокого напряжения
- Ввод пробы
- Детекторы
- Системы термостабилизации. Сбор и обработка данных
- Эффективность разделения
- Чувствительность метода
- Разрешение и селективность разделения
- Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- Количественная обработка результатов анализа
- Объекты для анализа методом кэ. Подготовка пробы
- Электрофореза и примеры использования Анализ объектов окружающей среды.
- Анализ неорганических анионов с обращением эоп (рис. 9)
- Анализ неорганических анионов без обращения эоп (рис. 9)
- Анализ неорганических катионов в яблочном соке (рис. 9)
- Анализ ионного состава воды. Определение неорганических
- Особенности методики, практические рекомендации
- В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- 1.9. Качественный хроматографический анализ
- 5. Количественный анализ
- 11.1. Параметры пика как характеристика количества вещества
- Параметр h
- Параметр hl
- Параметр а
- Величины допустимых погрешностей задания параметров разделения
- 5.3.1 Методы триангуляции
- 7. Практическое использование хроматографии в контроле качества продукции