Углеродные адсорбенты
Основными представителями этой группы адсорбентов являются:
графитированная термическая сажа;
активированный уголь;
углеродные молекулярные сита;
Графитированная термическая сажа представляет собой непористый, инертный и устойчивый к высокой температуре адсорбент с физически и химически однородной поверхностью и высокой удельной поверхностной энергией.
Поверхность сажи состоит только из атомов углерода и имеет структурные параметры графита. Расстояние между соседними атомами углерода в гексагональном слое составляет 0.1418 нм, а между слоями 0.3385 нм. При адсорбции на базисной плоскости графита электроны проводимости существенной роли не играют, так что адсорбция любых молекул осуществляется в основном за счет дисперсионных сил.
Графитированную термическую сажу получают нагреванием сажи до 3000 оС в отсутствие кислорода и других окислителей. В процессе графитирования происходит рост кристаллов до размеров примерно 500 нм, а также удаление летучих веществ. При этом доля водорода и кислорода, содержащихся на поверхности в составе осмолившихся веществ и свободных радикалов, падает до 0.4 %. Оставшиеся загрязнения являются причиной асимметрии пиков и необратимой адсорбции полярных соединений. Большую часть загрязнений можно удалить в процессе обработки сажи водородом при 1100 оС после графитирования.
Графитированная термическая сажа представляет собой тонкий порошок, непригодный для непосредственного заполнения насадочных хроматографических колонок. В результате длительного встряхивания, которое проводится без добавления связующего, сажа скатывается в маленькие шарики, которые можно осторожно рассеять на фракции и заполнить выбранной фракцией колонку.
Из-за небольшой механической прочности этих частиц, обращаться с колонками, заполненными графитированной термической сажей, следует достаточно осторожно. Добавлением небольших количеств вязких полимеров (0.01 % апиезона L) можно улучшить механическую стабильность частиц графитированной термической сажи.
Известно, что интенсивность дисперсионного взаимодействия зависит от величины, формы и поляризуемости взаимодействующих частиц. В этой связи на графитированной термической саже при разделении методом газо-адсорбционной хроматографии циклические углеводороды элюируются из колонки раньше н-алкана с тем же числом атомов углерода, так как они не могут расположиться копланарно по отношению к поверхности графита и соответственно имеют меньшее число взаимодействующих с поверхностью атомов водорода.
Благодаря своей высокой чувствительности к геометрии молекулы, графитированная термическая сажа особенно хорошо подходит для разделения структурных и стереоизомеров, которые вследствие малых различий в их физических свойствах на жидких неподвижных фазах можно разделить лишь при очень высокой эффективности колонки.
Еще одно преимущество графитированной термической сажи состоит в том, что она легко модифицируется различными жидкими и твердыми фазами, а это позволяет производить селективное разделение самых различных соединений.
Активные угли представляют собой неспецифические адсорбенты с сильно развитой пористой структурой, образованной главным образом макро- и мезопорами различного диаметра.
Большая удельная поверхность (8001000 м2/г) обуславливает высокую адсорбционную емкость.
Получают активный уголь пиролизом различных углеродсодержащих материалов: дерева, торфа, бурого угля, фенолформальдегидных смол.
В зависимости от типа исходного материала и методики его обработки различные сорта активного угля содержат различного рода загрязнения (золу, серу, азот). На адсорбирующей поверхности угля имеются следы неорганических оксидов, а также функциональные кислородсодержащие группы.
Вследствие очень большой геометрической и химической неоднородности поверхности регистрируемые на хроматограмме пики даже низкокипящих газов обнаруживают асимметрию (“хвосты”).
Углеродные молекулярные сита. Термическим разложением виниленхлорида при соответствующих условиях можно получить микропористый углерод с удельной поверхностью 10001200 м2/кг и структурой молекулярного сита.
Эти углеродные молекулярные сита поставляются в виде гранул или сферических частиц с улучшенными механическими свойствами.
Молекулярно-ситовой эффект обусловлен наличием системы пор со средним диаметром 11.5 нм.
Углеродные молекулярные сита обладают следующими важными для хроматографии свойствами:
Отличаются незначительной полярностью. Они относятся к неспецифическим адсорбентам и поэтому для полярных веществ характерно малое время удерживания.
Обладают исключительно чистой поверхностью, что позволяет использовать их для разделения высокополярных соединений и выделения микропримесей при программировании температуры.
Удерживание на углеродных молекулярных ситах, как и удерживание на графитированной термической саже, зависит от числа атомов углерода в молекуле и степени насыщенности связей.
Первыми элюируются соединения с меньшим числом ненасыщенных связей, что очень важно при выявлении следов ненасыщенных соединений в насыщенных и менее ненасыщенных соединениях.
Типичным примером является определение микропримесей метана и ацетилена в этилене.
- Предисловие
- Введение
- 1. Хроматографические методы
- 1.1. Характеристики хроматографического разделения компонентов анализируемой смеси
- Изотермы адсорбции
- Изотермы адсорбции и форма фронтов зон
- 1.3 Теория теоретических тарелок
- 6.2. Оценка параметров эффективности и селективности хроматографической колонки
- 6.5. Степень разделения и ее связь с параметрами
- Влияние условий анализа на эффективность разделения
- 7.3. Влияние скорости потока газа-носителя на эффективность капиллярных колонок
- 8. Влияние температуры на параметры процесса разделения
- 1.5. Газовая хроматография
- 3.2. Газовый хроматограф. Принципиальная схема
- Устройства ввода пробы в хроматограф
- Ввод пробы
- 9.2. Чувствительность детектора. Предел обнаружения
- 9.3. Линейность детектора
- 9.4. Селективность детектора
- 1.3.5.1. Детекторы по теплопроводности
- 1.3.5.3. Пламенно-ионизационный детектор
- Значения инкрементов функциональных групп и связей
- Величины относительных молярных поправочных коэффициентов
- 1.3.5.4. Детектор электронного захвата
- 1.3.5.5. Детектор ионизационно-резонансный
- 1.5.5.6. Термоионный детектор
- 1.3.5.9.Фотоионизационный детектор (дфи)
- 3.1. Варианты метода газовой хроматографии
- Силы дисперсионного взаимодействия
- Силы индукционного взаимодействия
- Силы ориентационного взаимодействия
- Силы полухимического и химического взаимодействий
- 12.2. Классификация разделяемых соединений по их способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по способности к различным типам межмолекулярных взаимодействий
- Классификация адсорбентов по особенностям внутренней геометрической структуры
- 12.4. Важнейшие адсорбенты и характеристика их свойств
- Углеродные адсорбенты
- Адсорбенты с большим содержанием кремниевой кислоты
- Оксид алюминия
- Органические сорбенты
- 12.5. Приложение теории адсорбции к газовой хроматографии
- 12.6. Основные преимущества и недостатки газо-адсорбционной хроматографии
- 13.2. Классификация основных носителей неподвижных жидких фаз Диатомовые носители
- Стеклянные микрошарики
- Силикагель
- Оксид алюминия
- Политетрафторэтилен
- 13.3. Неподвижные жидкие фазы
- Химическая активность
- Давление паров и термостойкость
- Размеры молекул
- Вязкость
- Способность к растворению разделяемых соединений
- Разделительные свойства
- 13.4. Классификация неподвижных жидких фаз
- Шкала относительной полярности неподвижных жидких фаз
- Классификация неподвижных жидких фаз по индексам удерживания Ковача
- Классификация неподвижных жидких фаз по веществам-стандартам
- Классификация неподвижных жидких фаз Мак-Рейнольдса
- 13.5. Важнейшие неподвижные жидкие фазы
- Неароматические углеводороды
- Ароматические углеводороды
- Силиконы
- Фенилсиликоны
- Спирты, эфиры и производные углеводов
- Полигликоли
- Ароматические простые эфиры
- Сложные эфиры
- 7.2. Влияние количества неподвижной жидкой фазы на свойства насадки
- 7.4. Влияние толщины пленки неподвижной жидкой фазы на эффективность капиллярной колонки
- 4.4. Основные преимущества и недостатки газо-жидкостной хроматографии
- 3. Жидкостная хроматография
- Основное оборудование для тсх
- Техника эксперимента в тсх
- Сверхкритическая флюидная хроматография
- Критические величины для подвижных фаз в сфх
- 2. Свойства сверхкритических флюидов, используемые
- 4. Приборное оформление
- 5. Современные задачи сфх с насадочными колонками
- 6. Заключение
- 6. Капиллярный электрофорез Введение
- Принятые термины и сокращения
- Физико-химические основы метода капиллярного электрофореза
- Основные варианты капиллярного электрофореза
- Аппаратура Общее устройство систем кэ
- Капилляры
- Источники высокого напряжения
- Ввод пробы
- Детекторы
- Системы термостабилизации. Сбор и обработка данных
- Эффективность разделения
- Чувствительность метода
- Разрешение и селективность разделения
- Обработка результатов в капиллярном электрофорезе. Качественный и количественный анализ
- Количественная обработка результатов анализа
- Объекты для анализа методом кэ. Подготовка пробы
- Электрофореза и примеры использования Анализ объектов окружающей среды.
- Анализ неорганических анионов с обращением эоп (рис. 9)
- Анализ неорганических анионов без обращения эоп (рис. 9)
- Анализ неорганических катионов в яблочном соке (рис. 9)
- Анализ ионного состава воды. Определение неорганических
- Особенности методики, практические рекомендации
- В присутствии (а) и в отсутствие (б) Br в составе ведущего электролита.
- 1.9. Качественный хроматографический анализ
- 5. Количественный анализ
- 11.1. Параметры пика как характеристика количества вещества
- Параметр h
- Параметр hl
- Параметр а
- Величины допустимых погрешностей задания параметров разделения
- 5.3.1 Методы триангуляции
- 7. Практическое использование хроматографии в контроле качества продукции