logo
FKhMA_metodicheskie_ukazania

Метрологические характеристики и статистическая обработка результатов анализа

Значение измеряемого аналитического сигнала – случайная величина. Для характеристики результата анализа применяют понятия «правильность», «точность», «воспроизводимость», «чувствительность».

Мерой точности и воспроизводимости является величина случайной ошибки. Для некоторой концентрации Сi абсолютная случайная ошибка

Δсл = │Сi – Ĉ│;

относительная случайная ошибка

δсл =│(Сi – Ĉ) / Ĉ,

где Ĉ – среднее арифметическое значение нескольких определений.

Мерой правильности является величина систематической ошибки. Для некоторой концентрации Сi абсолютная систематическая ошибка

Δсист = │Сист – Ĉ│;

относительная систематическая ошибка

δсист = ист – Ĉ)│/ Сист,

где Сист – истинное значение определяемой концентрации.

Систематические ошибки (например, смещение шкалы при настройке измерительного прибора) устранимы. Случайные ошибки полностью устранить нельзя, их можно только уменьшить. Случайные ошибки делают неточным результат анализа, а систематические –неверным сам анализ.

Чувствительность метода оценивают по крутизне зависимости в координатах «аналитический сигнал – концентрация определяемого вещества». Первую производную аналитического сигнала А по концентрации называют коэффициентом чувствительности k (или чувствительностью):

.

Например, при фотометрическом определении Fe3+ используют его поглощающие свет комплексы с тиоцианат-ионами SCN или анионами сульфосалициловой кислоты C6H3(OH)(COOH)SO3. Из рис. 1. следует dА2/d(C) > dА1/d(C). Таким образом, второй метод чувствительнее первого.

Рис. 1. Зависимость оптической плотности раствора от концентрации Fe3+

для тиоцианатных (1) и сульфосалицилатных (2) комплексов

В фотометрии аналитический сигнал «оптическая плотность» А связан с толщиной слоя раствора l и концентрацией законом Бугера:

А = ε · l · C

В уравнении закона Бугера молярный коэффициент поглощения ε является мерой чувствительности (коэффициентом чувствительности).

Обычно наблюдаемые в аналитической практике случайные значения подчиняется закону нормального распределения Гаусса (рис. 2):

,

где y – плотность вероятности распределения случайной величины хi; μ – математическое ожидание (среднее арифметическое значение для генеральной совокупности); σ – среднее квадратичное отклонение (расстояние от μ до проекции точки перегиба на ось х).

Рис. 2. Кривая Гаусса

При проведении серии из n параллельных измерений в качестве результата выбирают среднее значение и приводят метрологические характеристики результатов анализа. Важнейшей из них является доверительный интервал ε:

где tα,f – значение критерия Стьюдента для доверительной вероятности α и числа степеней свободы f; σ – среднее квадратичное отклонение.

Расчет величины σ ведут по формуле

.

Подробное описание этапов статистической обработки результатов анализа дано в приложении 2.