3. Смеси
Смеси - это физические сочетания чистых веществ, не имеющие определенного или чистого состава. Примером смеси может служить обыкновенный чай (напиток), который многие самостоятельно готовят и пьют по утрам. Кто-то любит крепкий чай (большое кол-во заварки), кто-то любит сладкий чай (большое кол-во сахара)… Как видим, смесь под названием "чай" всегда получается немного разной, хотя и состоит из одних и тех же компонентов (ингредиентов). Однако, следует отметить, что каждый компонент смеси сохраняет набор своих характеристик, поэтому, разные вещества можно выделить из смеси. Например, можно без особого труда разделить смесь из соли и песка. Для этого достаточно поместить смесь в воду, подождать пока соль растворится и отфильтровать полученный раствор. В результате получим чистый песок. Смеси могут быть однородными и неоднородными. В однородной смеси нельзя обнаружить частицы веществ, из которых состоит смесь. Пробы, взятые в разных местах такой смеси будут одинаковы (например, сладкий чай, в котором полностью растворился насыпанный сахар). Однако, если в стакане с чаем сахар растворится не полностью, то мы получим неоднородную смесь. Действительно, если попробовать такой чай, то с поверхности он будет не таким сладким, как со дна, т.к. концентрация сахара будет разной. Билет№7
Агрегатные состояния вещества
А грегатные состояния вещества (от латинского aggrego — присоединяю, связываю) — это состояния одного и того же вещества, переходам между которыми соответствуют скачкообразные изменения свободной энергии, энтропии, плотности и других физических параметров вещества. Газ (французское gaz, происшедшее от греческого chaos — хаос) — это агрегатное состояние вещества, в котором силы взаимодействия его частиц, заполняющих весь предоставленный им объем, пренебрежимо малы. В газах межмолекулярные расстояния велики и молекулы движутся практически свободно. Газы можно рассматривать как значительно перегретые или малонасыщенные пары. Над поверхностью каждой жидкости вследствие испарения находится пар. При повышении давления пара до определенного предела, называемого давлением насыщенного пара, испарение жидкости прекращается, так как давление пара и жидкости становится одинаковым. Уменьшение объема насыщенного пара вызывает конденсацию части пара, а не повышение давления. Поэтому давление пара не может быть выше давления насыщенного пара. Состояние насыщения характеризуется массой насыщения, содержащейся в 1м массой насыщенного пара, которая зависит от температуры. Насыщенный пар может стать ненасыщенным, если увеличивать его объем или повышать температуру. Если температура пара много выше точки кипения, соответствующей данному давлению, пар называется перегретым. Плазмой называется частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Солнце, звезды, облака межзвездного вещества состоят из газов — нейтральных или ионизованных (плазмы). В отличие от других агрегатных состояний плазма представляет собой газ заряженных частиц (ионов, электронов), которые электрически взаимодействуют друг с другом на больших расстояниях, но не Жидкость - это агрегатное состояние вещества, промежуточное между твердым и газообразным. Жидкостям присущи некоторые черты твердого вещества (сохраняет свой объем, образует поверхность, обладает определенной прочностью на разрыв) и газа (принимает форму сосуда, в котором находится). Тепловое движение молекул (атомов) жидкости представляет собой сочетание малых колебаний около положений равновесия и частых перескоков из одного положения равновесия в другое. Одновременно происходят медленные перемещения молекул и их колебания внутри малых объемов, частые перескоки молекул нарушают дальний порядок в расположении частиц и обусловливают текучесть жидкостей, а малые колебания около положений равновесия обусловливают существование в жидкостях ближнего порядка. Жидкости и твердые вещества, в отличие от газов, можно рассматривать как высоко конденсированные среды. В них молекулы (атомы) расположены значительно ближе друг к другу и силы взаимодействия на несколько порядков больше, чем в газах. Поэтому жидкости и твердые вещества имеют существенно ограниченные возможности для расширения, заведомо не могут занять произвольный объем, а при постоянных давлении и температуре сохраняют свой объем, в каком бы объеме их не размещали. Переходы из более упорядоченного по структуре агрегатного состояния в менее упорядоченное могут происходить и непрерывно. В связи с этим вместо понятия агрегатного состояния целесообразно пользоваться более широким понятием — понятием фазы. Фазой называется совокупность всех частей системы, обладающих одинаковым химическим составом и находящихся в одинаковом состоянии. Это оправдано одновременным существованием термодинамически равновесных фаз в многофазной системе: жидкости со своим насыщенным паром; воды и льда при температуреплавления; двух несмешивающихся жидкостей (смесь воды с триэтиламином), отличающихся концентрациями; существованием аморфных твердых веществ, сохраняющих структуру жидкости (аморфное состояние). Аморфное твердое состояние вещества является разновидностью переохлажденного состояния жидкости и отличается от обычных жидкостей существенно большей вязкостью и численными значениями кинетических характеристик. Кристаллическое твердое состояние вещества — это агрегатное состояние, которое характеризуется большими силами взаимодействия между частицами вещества (атомами, молекулами, ионами). Частицы твердых тел совершают колебания около средних равновесных положений, называемых узлами кристаллической решетки; структура этих веществ характеризуется высокой степенью упорядоченности (дальним и ближним порядком) — упорядоченностью в расположении (координационный порядок), в ориентации (ориентационный порядок) структурных частиц, или упорядоченностью физических свойств (например, в ориентации магнитных моментов или электрических дипольных моментов). Область существования нормальной жидкой фазы для чистых жидкостей, жидкого и жидких кристаллов ограничена со стороны низких температур фазовыми переходами соответственно в твердое (кристаллизацией), сверхтекучее и жидко-анизотропное состояние.обладают ни ближним, ни дальним порядками в расположении частиц.
Билет№8
Вода
Существует одна особенность при исследовании свойств гомеопатических растворов. При гомеопатическом растворе на эффект влияют не только растворяемые вещества и потенцирование, но есть и третья особенность, которую не учитывают исследователи. Сам раствор потенцируется в электромагнитном аппарате, и электромагнитные поля прибора оказывают влияние на водородные связи между водными молекулами. Это означает, что при таком способе подготовки гомеопатических растворов нельзя делать фундаментальные выводы об информационных свойствах воды.
Память воды в современной науке - вопрос о том, как долго сохраняется информация водными молекулами, является дискуссионным. С другой стороны, вода обладает целым рядом исключительных свойств, позволяющих ей сохранять и распространять информацию в результате внешнего физического или химического фактора воздействия. В физическом смысле правильным термином является "информативность" воды.
Д-р И.Игнатов, Болгария. Смотрите его статью - Вода для зарождения жизни.
Ваши вопросы о воде:
Задать свой вопрос вы можете в комментариях к данной статье (после регистрации на сайте).
Вода - первоисточник жизни. То, без чего невозможна жизнь. Портал o8ode.ru посвящается воде во всех её проявлениях. Речь пойдёт о питьевой воде и способах её очистки, а также об энергетике воды и её необычных свойствах, о талой воде и о том как талая вода способствует сохранению здоровья. А также читайте о том, что такое реликтовая вода и как она продлевает жизнь.
Читайте материал Мосина О.В. о современной модели воды.
"Чрезвычайно важно понять, что вода является разной. В отношении моделей проф.Зенина и проф. Чаплина, я считаю, что они скорее теоретические. Иначе говоря, эти модели пытаются перевести на язык класической физики результаты квантовой механики. Мои эксперименты показывают, что размер кластеров не превышает 30-50 нанометров. Нелогично, чтобы вода стремилась создавать геометрические фигуры. Мои измерения также показывают, что после шестой потенции информация в гомеопатических растворах уменьшается. Это в согласии с теоретической физикой ". (д-р И.Игнатов).
Мы никогда не будем иметь больше воды, чем имеем сейчас. Вода — единственная субстанция, которая встречается в природе в трех формах: твердой (лед), жидкой и в виде газа.
Хроническое обезвоживание является первостепенной причиной большинства дегенеративных заболеваний человеческого организма. Об этом - отдельный раздел сайта. Вы узнаете о том, что сухость во рту - это не первый, а последний, крайний признак обезвоживания организма, а также о том, какие болезни легко излечить, просто начав пить воду. Вода - это древний универсальный символ чистоты, плодородия и источник самой жизни. Во всех известных легендах о происхождении мира жизнь произошла из первородных вод, женского символа потенции, лишенной формы. Книга Бытия, описывая сотворение мира, использует очень древний образ – оживляющие проникание “духа божьего” к мировым водам, изображаемое (в иудейском оригинале) через метафору птицы, которая высиживает яйцо.
Но одновременно вода – плодотворящее мужское семя, заставляющее землю “рожать”. Этот мотив характерен, например, для хананейско – финикийского образа Балу (Баал-Хаддада). Эта же символика отмечается в древнегреческой мифологии, где речные божества выступают как жеребцы и супруги смертных женщин.
Воду также сравнивали с мудростью. Так в даосизме образ воды, которая находит путь в обход препятствий – символ триумфа видимой слабости над силой. В психологии она представляет энергию бессознательного и его таинственные глубины и опасности. Неутомимая вода – буддийский символ бурного потока бытия. С другой стороны, прозрачность спокойной воды символизирует созерцательное восприятие.
Вода - и источник жизни, и великая тайна.
Человеческий организм примерно на 75% состоит из воды. Считается, что мозг состоит из воды на 85% и отличается исключительной чувствительностью к обезвоживанию. Мозг постоянно омывается соленой спинномозговой жидкостью.
Раствор
[править]
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 сентября 2011; проверки требуют 14 правок.
О растворе в строительстве см. строительный раствор
Растворение соли в воде
Раство́р — гомогенная (однородная) смесь, состоящая из частиц растворённого вещества, растворителя и продуктов их взаимодействия.
Раствор — однофазная система переменного состава, состоящая из двух или более компонентов. Растворы — гомогенные (однородные) системы, то есть каждый из компонентов распределён в массе другого в виде молекул, атомов или ионов[1].
Растворитель — компонент, агрегатное состояние которого не изменяется при образовании раствора. В случае же растворов, образующихся при смешении газа с газом, жидкости с жидкостью, твёрдого вещества с твёрдым, растворителем считается компонент, количество которого в растворе преобладает[1].
Образование того или иного типа раствора обусловливается интенсивностью межмолекулярного, межатомного, межионного или другого вида взаимодействия, то есть, теми же силами, которые определяют возникновение того или иного агрегатного состояния. Отличия: образование раствора зависит от характера и интенсивности взаимодействия частиц разных веществ[1].
По сравнению с индивидуальными веществами по структуре растворы сложнее[1].
Растворы бывают газовыми, жидкими и твёрдыми[1].
Содержание [убрать]
|
[править]Твёрдые, жидкие, газообразные растворы
Чаще под раствором подразумевается жидкое вещество, например раствор соли или спирта в воде (или даже раствор золота в ртути — амальгама).
Существуют также растворы газов в жидкостях, газов в газах и жидкостей в жидкостях, в последнем случае растворителем считается вода, или же компонент, которого больше.
В химической практике обычно под растворами понимают гомогенные системы, растворитель может быть жидким, твёрдым (твёрдый раствор), газообразным. Однако нередко допускается и микрогетерогенность — см. «Золи».
«Раствором» именуют и смесь цемента с водой, песком и так далее. Хотя это и не является раствором в химическом смысле этого слова.
[править]Ионные и коллоидные растворы
Коллоидные и ионные растворы (изучением коллоидных систем занимается коллоидная химия) отличаются главным образом размерами частиц.
В ионных растворах размер частиц менее 1·10−9 м, частицы в таких растворах невозможно обнаружить оптическими методами; в то время как в коллоидных растворах размер частиц 1·10−9м — 5·10−7 м, частицы в таких растворах можно обнаружить при помощи ультрамикроскопа (см. эффект Тиндаля).
[править]Растворение
Растворение — переход молекул вещества из одной фазы в другую (раствор, растворенное состояние). Происходит в результате взаимодействия атомов (молекул) растворителя и растворённого вещества и сопровождается увеличением энтропии при растворении твёрдых веществ и её уменьшением при растворении газов. При растворении межфазная граница исчезает, при этом многие физические свойства раствора (например, плотность, вязкость, иногда — цвет, и другие) меняются.
В случае химического взаимодействия растворителя и растворённого вещества сильно меняются и химические свойства — например, при растворении газа хлороводорода в воде образуется жидкая соляная кислота.
[править]Растворы электролитов и неэлектролитов
Электролиты - вещества, проводящие в расплавах или водных растворах электрический ток. В расплавах или водных растворах они диссоциируют на ионы. Неэлектролиты - вещества, водные растворы и расплавы которых не проводят электрический ток, так как их молекулы не диссоциируют на ионы. Электролиты при растворении в подходящих растворителях (вода, другие полярные растворители) диссоциируют на ионы. Сильное физико-химическое взаимодействие при растворении приводит к сильному изменению свойств раствора (химическая теория растворов).
Вещества, которые в тех же условиях на ионы не распадаются и электрический ток не проводят, называются неэлектролитами.
К электролитам относятся кислоты, основания и почти все соли, к неэлектролитам — большинство органических соединений, а также вещества, в молекулах которых имеются только ковалентные неполярные или малополярные связи.
[править]Растворы полимеров
Растворы высокомолекулярных веществ ВМС — белков, углеводов и др. обладают одновременно многими свойствами истинных и коллоидных растворов. Средняя молекулярная масса растворенного…
[править]Концентрация растворов
В зависимости от цели для описания концентрации растворов используются разные физические величины.
[править]Мнемонические правила
В случаях приготовления растворов сильных кислот согласно правилам техники безопасности кислоту нужно добавлять в воду, но ни в коем случае не наоборот. Для запоминания этого лабораторного приёма существует несколько мнемонических правил:
Сначала вода, Потом кислота, Иначе случится Большая беда
Не плюй в кислоту, а то она ответит!
Чай с лимоном (здесь нужно представить, как в чай Вы кладете дольку лимона).
"коньяк выдержанный" (кислоту в воду)
[править]
Билет№9
Электролитическая диссоциация кислот, оснований, солей.
ПЛАН ОТВЕТА:
Электролиты.
Положения теории электролитической диссоциации.
Степень электролитической диссоциации.
Классификация электролитов.
Механизм электролитической диссоциации веществ с ионным типом связи.
Механизм электролитической диссоциации веществ с ковалентной сильнополярной связью.
Диссоциация кислот.
Диссоциация оснований.
Диссоциация солей.
Электролиты – вещества, водные растворы и расплавы которых проводят электрический ток. Эти вещества имеют ионную и ковалентную сильнополярную связи. Электролитами являются кислоты, основания, соли. Поведение электролитов в растворе объясняет теория электролитической диссоциации, сформулированная Сванте Аррениусом в 1887 году. Теория состоит из следующих положений:
При растворении в воде электролиты распадаются на положительно и отрицательно заряженные ионы. Процесс распада электролита на ионы называется электролитической диссоциацией.Электролитическая диссоциация – процесс обратимый. Обратная реакция называется моляризацией.
Под действием электрического напряжения катионы двигаются к катоду, а анионы – к аноду.
Степень электролитической диссоциации зависит от природы электролита, температуры, концентрации.
Степень электролитической диссоциации – это величина, которая показывает отношение числа распавшихся на ионы молекул к общему числу молекул в растворе. Обозначается a. Измеряется в % (долях). N – общее число молекул в растворе, n – число диссоциированных молекул.
В зависимости от величины степени электролитической диссоциации электролиты разделяют на сильные и слабые:
ЭЛЕКТРОЛИТЫ
1.
Сильные
> 0,3
KOH, NaOH, HCl, H2SO4, Na2SO4, Al2(SO4)3.
2.
Слабые
< 0,3
H2S, H2CO3, Cu(OH)2, Fe(OH)3, NH4OH
Сильные электролиты имеют значение степени диссоциации более 0,3. В их растворах практически нет молекул, есть только ионы. Сильными электролитами являются все соли, щёлочи, азотная, соляная и серная кислоты. К слабым электролитам относятся электролиты со степенью диссоциации меньше 0,3. В их растворах есть и ионы, и молекулы, причём молекул больше. К ним относятся нерастворимые основания гидроксид аммония, угольная, фосфорная, сернистая и кремниевая кислоты.,
Рассмотрим механизм диссоциации веществ с ионным видом связи на примере хлорида натрия (см. таблицу). Он состоит из трёх этапов:
ориентация полярных молекул воды (диполей) вокруг кристалла и расшатывание кристаллической решётки под действием хаотичного движения молекул воды;
разрушение кристаллической решётки – диссоциация хлорида натрия;
гидратация – окружение молекулами воды ионов натрия и хлора (образование гидратированных ионов).
Механизм диссоциации веществ с ковалентной полярной связью включает в себя дополнительный этап:
ориентация полярных молекул воды вокруг полярной молекулы электролита;
изменение вида связи с ковалентной полярной на ионную;
диссоциация электролита;
гидратация ионов.
Все кислоты в водных растворах диссоциируют на ионы водорода и ионы кислотного остатка.
Полная диссоциация: H2SO4 ® 2H+ + SO42-
Ступенчатая диссоциация: H2SO4 ® H+ + HSO41-
HSO41- ® H+ + SO42-
Основания в водных растворах диссоциируют на гидроксид-ионы и ионы металла.
Полная диссоциация: Ba(OH)2 ® Ba2+ + 2OH1-
Ступенчатая диссоциация: Ba(OH)2 ® BaOH+ + OH1-
BaOH+ ® Ba2+ + OH1-
Средние соли диссоциируют в водных растворах на ионы металла и ионы кислотного остатка:
CaCl2 ® Ca2+ + 2Cl1-
Al2(SO4)3 ® 2Al3+ + 3SO42-
Кислые соли диссоциируют на ионы металла, ионы водорода и ионы кислотного остатка:
NaHSO4 ® Na+ + H+ + SO42-
Билет №10
- 1. Чистые вещества
- 2. Соединения элементов
- 3. Смеси
- Классификация неорганических веществ
- Основания
- Химические свойства
- Химические свойства
- 6.7. Гидролиз солей
- Вещества неорганические и органические. Состав органических веществ, особенности их свойств
- Распространенность металлов в земной коре
- 1.5. Химические свойства неметаллов
- Взаимодействие с металлами:
- Взаимодействие с другими неметаллами:
- Предмет органической химии. Органические вещества
- Алкены. Получение, химические свойства и применение алкенов
- 2. Химические свойства алкенов
- Ацетилен Общие сведения
- Физические свойства
- Химические свойства
- Способ производства
- Применение
- Преимущества ацетилена при газопламенной обработке металлов
- Сравнительные характеристики пламени при сварке различным газами
- Хранение и перевозка ацетилена
- Опасные факторы и меры безопасности
- Природные источники углеводородов. Природный газ. Попутные нефтяные газы
- Нефть и нефтепродукты, их применение
- Моносахариды
- Химические свойства глюкозы
- Дисахариды
- Химические свойства
- Полисахариды
- Химические свойства
- Изомеры и гомологи
- Химические свойства
- Получение -аминокислот.