Повышение температуры кипения растворов.
Кипение представляет собой фазовый переход, при котором происходит превращение жидкости в пар. Температурой кипения жидкости называют ту температуру, при которой давление насыщенного пара над данной жидкостью равна внешнему. При этой температуре и соответствующем ей давлении насыщенного пара устанавливается равновесие между жидкой и газообразной фазами: скорость испарения равна скорости обратного процесса – конденсации и обе эти фазы могут сосуществовать в течение длительного времени.
, где
Е – коэффициент пропорциональности, численно равный повышению температуры кипения раствора, содержащего 1 моль растворенного вещества в 1000г растворителя, при условии, что раствор этой концентрации обладает свойствами идеального. Такое повышение температуры кипения называется молярным или эбуллиоскопической постоянной.
Величина Е зависит только от свойств растворителя и может быть найдена либо опытным путем, либо рассчитана по термодинамическому соотношению
, где
Т – температура кипения чистого растворителя по аб. шкале
l – удельная теплота испарения растворителя
R – универсальная газовая постоянная
Св – концентрация раствора, выражаемая обычно в молях растворенного вещества на 1000 г растворителя.
Если Мв – молярная масса растворенного вещества, mв – его масса (в г), а mА – масса растворителя в граммах, то Св будет определяться следующим соотношением
Рассмотрим зависимость давления пара растворителя над чистым растворителем (0А) и над разбавленными растворами разной концентрации нелетучего вещества (ВС и ДЕ) от температуры (рис.1)
P 101,3 кПа А С Е
0 С'
B Е''
D Ткип0 Т’кип T”кип
Температуры, при которых изобара, равная атмосферному давлению (101,3 кПа), пересечет кривые 0А, ВС и ДЕ, будут температурами кипения соответствующих жидкостей при этом давлении. Для растворов эти температуры (Т’кип и T”кип) являются более высокими, чем для чистого растворителя (Ткип0) и разность между ними
будет тем большей, чем выше концентрация раствора. Для бесконечно разбавленных растворов бесконечно малые участки кривых CC’, ЕЕ’ можно считать прямолинейным. Тогда из подобия треугольников АСС’, АЕЕ’ вытекает, что повышение температуры кипения пропорционально понижению давления насыщенного пара и, следовательно, повышение температуры кипения пропорционально концентрации.
Определив опытным путем повышение температуры кипения раствора, можно вычислить молярную массу вещества
Этот метод определения молекулярных масс носит название эбуллиоскопического.
- Предисловие
- Введение
- Роберт Вильгельм Бунзен
- Анри Луи Ле Шаталье
- Вильгельм Фридрих Оствальд
- Сванте Август Аррениус
- Якоб Генрих Вант-Гофф
- Иоханн Николаус Брёнстед и Михаил Ильич Усанович
- Николай Николаевич Семенов
- Химическая термодинамика учебно-целевые задачи – научить студентов:
- Значимость темы
- Основные понятия и определения химической термодинамики
- Внутренняя энергия
- Теплота и работа
- Первый закон термодинамики
- Применение I закона к простейшим процессам
- Тепловые эффекты. Закон гесса
- Теплоемкость
- Второй закон термодинамики
- Некоторые формулировки 2-го закона
- Изменение энтропии при различных процессах
- Пастулат планка
- Термодинамические потенциалы
- Соотношение между термодинамическими потенциалами
- Закон действующих масс
- Вопросы по теме: "термодинамика"
- Примеры решения типовых задач
- Пример решения контрольного задания по теме "Термодинамика"
- Решение
- Задачи для самостоятельной работы
- Варианты заданий для домашней контрольной работы
- Лабораторная работа №1.
- Особые условия выполнения работы:
- Устройство и настройка термометра Бекмана
- Термодинамика фазовых превращений
- Термодинамика фазовых равновесий
- Основные понятия
- Уравнение клайперона-клаузиуса
- Диаграммы состояния однокомпонентных систем
- Диаграмма состояния воды
- Диаграмма состояния диоксида углерода
- Бинарные системы Диаграммы плавкости
- Взаимная растворимость жидкостей
- Трехкомпонентные системы
- Равновесие жидкость-жидкость в трехкомпонентных системах.
- Распределение растворяемого вещества между двумя жидкими фазами. Экстракция.
- Вопросы для подготовки к занятиям по теме: "термодинамика фазовых равновесий".
- Примеры решения типовых задач.
- Задачи для самостоятельной работы.
- Лабораторная работа 1: построение диаграммы плавкости 2-х компонентной системы с простой эвтектикой.
- Лабораторная работа № 2. Изучение взаимной растворимости фенола и воды.
- Лабораторная работа № 3. Определение коэффициента распределения уксусной кислоты между водой и бензолом.
- Свойства разбавленных растворов электролитов и неэлектролитов.
- Повышение температуры кипения растворов.
- Понижение температуру замерзания растворов.
- Биологическое значение осмотического давления
- Указания к выполнению работы.
- Вопросы для самоконтроля по технике выполнения работы
- Вопросы для самоконтроля при выполнении данного задания
- Вопросы и задачи для самоконтроля усвоения темы
- Вопросы для самоконтроля усвоения материала практической работы
- Биологический статус изучаемой темы
- Вопросы для подготовки:
- Диссоциация воды
- Водородный показатель
- Механизм действия буферных систем
- РН буферных систем
- Влияние изменения объема буферных систем на рН.
- Кислотно-щелочное равновесие крови
- Роль внутренних органов в поддержании кислотно-щелочного резерва.
- Изменение кислотно-щелочного равновесия при различных заболеваниях.
- Задачи и задания для самостоятельной работы
- Экспериментальная часть
- Работа №3. Определение буферной ёмкости.
- Электрохимия. Учебно-целевые задачи: Изучив этот раздел учебной программы, студент должен знать:
- Значение электрохимических явлений для медицины.
- Электродные процессы и электродвижущие силы.
- Электрод и электродный потенциал.
- Строение двойного электрического слоя на границе раствор-металл
- Уравнение нернста
- Гальванические элементы и их электродвижущие силы
- Концентрационные гальванические элементы.
- Диффузный потенциал.
- Электроды первого рода.
- Водородный электрод.
- Ионоселективные электроды
- Стеклянный электрод
- Электроды второго рода.
- Хлорсеребряный электрод Аg ׀ Ag Cl. KCl
- Сопровождается реакцией растворения или осаждения соли АgСl:
- Окислительно – восстановительные системы (ов) и ов –электроды.
- Уравнение Петерса.
- Классификация обратимых электродов.
- Измерение эдс гальванических элементов.
- Потенциометрия.
- Прямые потенциометрические методы.
- Приложение
- Экспериментальная часть. Лабораторная работа №1. Измерение эдс гальванических элементов.
- Порядок выполнения работы.
- Изменение потенциалов отдельных электродов.
- Потенциалов отдельных электродов.
- Лабораторная работа № 3.
- Лабораторная работа №4. Потенциометрическое измерение окислительно – восстановительных потенциалов. Редокс – системы.
- Кинетика
- Значение для медицины и фармации
- Вопросы для подготовки к занятию
- Введение
- Понятие о скорости химического процесса
- Основной закон химической кинетики
- Кинетические уравнения реакций
- Реакции первого порядка
- Реакции второго порядка
- Сложные реакции
- Гетерогенные реакции
- Температурная зависимость константы скорости реакции.
- Методы расчета энергии активации и предэкспоненциального множителя а.
- Основы молекулярной кинетики
- Теория активных столкновений
- Теория переходного состояния
- Задачи и задания для самостоятельного решения.
- Экспериментальная часть
- Опыт № 1.Зависимость от концентрации.
- Опыт №2. Зависимость от температуры
- Учебно-методическое и информационное обеспечение дисциплины
- По технике безопасности
- И производственной санитарии при работе
- В химических лабораториях
- Медицинских учебных заведений
- Содержание